首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Woo HD  Kim J 《PloS one》2012,7(4):e34615

Background

Good biomarkers for early detection of cancer lead to better prognosis. However, harvesting tumor tissue is invasive and cannot be routinely performed. Global DNA methylation of peripheral blood leukocyte DNA was evaluated as a biomarker for cancer risk.

Methods

We performed a meta-analysis to estimate overall cancer risk according to global DNA hypomethylation levels among studies with various cancer types and analytical methods used to measure DNA methylation. Studies were systemically searched via PubMed with no language limitation up to July 2011. Summary estimates were calculated using a fixed effects model.

Results

The subgroup analyses by experimental methods to determine DNA methylation level were performed due to heterogeneity within the selected studies (p<0.001, I2: 80%). Heterogeneity was not found in the subgroup of %5-mC (p = 0.393, I2: 0%) and LINE-1 used same target sequence (p = 0.097, I2: 49%), whereas considerable variance remained in LINE-1 (p<0.001, I2: 80%) and bladder cancer studies (p = 0.016, I2: 76%). These results suggest that experimental methods used to quantify global DNA methylation levels are important factors in the association study between hypomethylation levels and cancer risk. Overall, cancer risks of the group with the lowest DNA methylation levels were significantly higher compared to the group with the highest methylation levels [OR (95% CI): 1.48 (1.28–1.70)].

Conclusions

Global DNA hypomethylation in peripheral blood leukocytes may be a suitable biomarker for cancer risk. However, the association between global DNA methylation and cancer risk may be different based on experimental methods, and region of DNA targeted for measuring global hypomethylation levels as well as the cancer type. Therefore, it is important to select a precise and accurate surrogate marker for global DNA methylation levels in the association studies between global DNA methylation levels in peripheral leukocyte and cancer risk.  相似文献   

2.
Sunami E  de Maat M  Vu A  Turner RR  Hoon DS 《PloS one》2011,6(4):e18884

Background

Methylation levels of genomic repeats such as long interspersed nucleotide elements (LINE-1) are representative of global methylation status and play an important role in maintenance of genomic stability. The objective of the study was to assess LINE-1 methylation status in colorectal cancer (CRC) in relation to adenomatous and malignant progression, tissue heterogeneity, and TNM-stage.

Methodology/Principal Findings

DNA was collected by laser-capture microdissection (LCM) from normal, adenoma, and cancer tissue from 25 patients with TisN0M0 and from 92 primary CRC patients of various TNM-stages. The paraffin-embedded tissue sections were treated by in-situ DNA sodium bisulfite modification (SBM). LINE-1 hypomethylation index (LHI) was measured by absolute quantitative analysis of methylated alleles (AQAMA) realtime PCR; a greater index indicated enhanced hypomethylation. LHI in normal, cancer mesenchymal, adenoma, and CRC tissue was 0.38 (SD 0.07), 0.37 (SD 0.09), 0.49 (SD 0.10) and 0.53 (SD 0.08), respectively. LHI was significantly greater in adenoma tissue compared to its contiguous normal epithelium (P = 0.0003) and cancer mesenchymal tissue (P<0.0001). LHI did not differ significantly between adenoma and early cancer tissue of Tis stage (P = 0.20). LHI elevated with higher T-stage (P<0.04), was significantly greater in node-positive than node-negative CRC patients (P = 0.03), and was significantly greater in stage IV than all other disease stages (P<0.05).

Conclusion/Significance

By using in-situ SBM and LCM cell selection we demonstrated early onset of LINE-1 demethylation during adenomatous change of colorectal epithelial cells and demonstrated that LINE-1 demethylation progression is linear in relation to TNM-stage progression.  相似文献   

3.

Purpose

Leukocyte global DNA methylation levels are currently being considered as biomarkers of cancer susceptibility and have been associated with risk of several cancers. In this study, we aimed to examine the association between long interspersed nuclear elements (LINE-1) methylation levels, as a biomarker of global DNA methylation in blood cell DNA, and renal cell cancer risk.

Experimental Design

LINE-1 methylation of bisulfite-converted genomic DNA isolated from leukocytes was quantified by pyrosequencing measured in triplicate, and averaged across 4 CpG sites. A total of 328 RCC cases and 654 controls frequency-matched(2∶1) on age(±5years), sex and study center, from a large case-control study conducted in Central and Eastern Europe were evaluated.

Results

LINE-1 methylation levels were significantly higher in RCC cases with a median of 81.97% (interquartile range[IQR]: 80.84–83.47) compared to 81.67% (IQR: 80.35–83.03) among controls (p = 0.003, Wilcoxon). Compared to the lowest LINE-1 methylation quartile(Q1), the adjusted ORs for increasing methylation quartiles were as follows: OR(Q2) = 1.84(1.20−2.81), OR(Q3) = 1.72(1.11−2.65) and OR(Q4) = 2.06(1.34−3.17), with a p-trend = 0.004. The association was stronger among current smokers (p-trend<0.001) than former or never smokers (p-interaction = 0.03). To eliminate the possibility of selection bias among controls, the relationship between LINE-1 methylation and smoking was evaluated and confirmed in a case-only analysis, as well.

Conclusions

Higher levels of LINE-1 methylation appear to be positively associated with RCC risk, particularly among current smokers. Further investigations using both post- and pre-diagnostic genomic DNA is warranted to confirm findings and will be necessary to determine whether the observed differences occur prior to, or as a result of carcinogenesis.  相似文献   

4.

Introduction

Folate and one-carbon metabolism are linked to cancer risk through their integral role in DNA synthesis and methylation. Variation in one-carbon metabolism genes, particularly MTHFR, has been associated with risk of a number of cancers in epidemiologic studies, but little is known regarding renal cancer.

Methods

Tag single nucleotide polymorphisms (SNPs) selected to produce high genomic coverage of 13 gene regions of one-carbon metabolism (ALDH1L1, BHMT, CBS, FOLR1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, TYMS) and the closely associated glutathione synthesis pathway (CTH, GGH, GSS) were genotyped for 777 renal cell carcinoma (RCC) cases and 1,035 controls in the Central and Eastern European Renal Cancer case-control study. Associations of individual SNPs (n = 163) with RCC risk were calculated using unconditional logistic regression adjusted for age, sex and study center. Minimum p-value permutation (Min-P) tests were used to identify gene regions associated with risk, and haplotypes were evaluated within these genes.

Results

The strongest associations with RCC risk were observed for SLC19A1 (Pmin-P = 0.03) and MTHFR (Pmin-P = 0.13). A haplotype consisting of four SNPs in SLC19A1 (rs12483553, rs2838950, rs2838951, and rs17004785) was associated with a 37% increased risk (p = 0.02), and exploratory stratified analysis suggested the association was only significant among those in the lowest tertile of vegetable intake.

Conclusions

To our knowledge, this is the first study to comprehensively examine variation in one-carbon metabolism genes in relation to RCC risk. We identified a novel association with SLC19A1, which is important for transport of folate into cells. Replication in other populations is required to confirm these findings.  相似文献   

5.

Background

One-carbon metabolism appears to play an important role in DNA methylation reaction. Evidence suggests that a low intake of B vitamins or high alcohol consumption increases colorectal cancer risk. How one-carbon nutrients affect the CpG island methylator phenotype (CIMP) or BRAF mutation status in colon cancer remains uncertain.

Methods

Utilizing incident colon cancers in a large prospective cohort of women (the Nurses'' Health Study), we determined BRAF status (N = 386) and CIMP status (N = 375) by 8 CIMP-specific markers [CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1], and 8 other CpG islands (CHFR, HIC1, IGFBP3, MGMT, MINT-1, MINT-31, p14, and WRN). We examined the relationship between intake of one-carbon nutrients and alcohol and colon cancer risk, by BRAF mutation or CIMP status.

Results

Higher folate intake was associated with a trend towards low risk of CIMP-low/0 tumors [total folate intake ≥400 µg/day vs. <200 µg/day; the multivariate relative risk = 0.73; 95% CI = 0.53–1.02], whereas total folate intake had no influence on CIMP-high tumor risks (Pheterogeneity = 0.73). Neither vitamin B6, methionine or alcohol intake appeared to differentially influence risks for CIMP-high and CIMP-low/0 tumors. Using the 16-marker CIMP panel did not substantially alter our results. B vitamins, methionine or alcohol intake did not affect colon cancer risk differentially by BRAF status.

Conclusions

This molecular pathological epidemiology study suggests that low level intake of folate may be associated with an increased risk of CIMP-low/0 colon tumors, but not that of CIMP-high tumors. However, the difference between CIMP-high and CIMP-low/0 cancer risks was not statistically significant, and additional studies are necessary to confirm these observations.  相似文献   

6.
Yao C  Li H  Shen X  He Z  He L  Guo Z 《PloS one》2012,7(1):e29686

Background

Hundreds of genes with differential DNA methylation of promoters have been identified for various cancers. However, the reproducibility of differential DNA methylation discoveries for cancer and the relationship between DNA methylation and aberrant gene expression have not been systematically analysed.

Methodology/Principal Findings

Using array data for seven types of cancers, we first evaluated the effects of experimental batches on differential DNA methylation detection. Second, we compared the directions of DNA methylation changes detected from different datasets for the same cancer. Third, we evaluated the concordance between methylation and gene expression changes. Finally, we compared DNA methylation changes in different cancers. For a given cancer, the directions of methylation and expression changes detected from different datasets, excluding potential batch effects, were highly consistent. In different cancers, DNA hypermethylation was highly inversely correlated with the down-regulation of gene expression, whereas hypomethylation was only weakly correlated with the up-regulation of genes. Finally, we found that genes commonly hypomethylated in different cancers primarily performed functions associated with chronic inflammation, such as ‘keratinization’, ‘chemotaxis’ and ‘immune response’.

Conclusions

Batch effects could greatly affect the discovery of DNA methylation biomarkers. For a particular cancer, both differential DNA methylation and gene expression can be reproducibly detected from different studies with no batch effects. While DNA hypermethylation is significantly linked to gene down-regulation, hypomethylation is only weakly correlated with gene up-regulation and is likely to be linked to chronic inflammation.  相似文献   

7.

Background

Gene silencing due to aberrant DNA methylation is a frequent event in hepatocellular carcinoma (HCC) and also in hepatocellular adenoma (HCA). However, very little is known about epigenetic defects in fibrolamellar carcinoma (FLC), a rare variant of hepatocellular carcinoma that displays distinct clinical and morphological features.

Methodology/Principal Findings

We analyzed the methylation status of the APC, CDH1, cyclinD2, GSTπ1, hsa-mir-9-1, hsa-mir-9-2, and RASSF1A gene in a series of 15 FLC and paired normal liver tissue specimens by quantitative high-resolution pyrosequencing. Results were compared with common HCC arising in non-cirrhotic liver (n = 10). Frequent aberrant hypermethylation was found for the cyclinD2 (19%) and the RASSF1A (38%) gene as well as for the microRNA genes mir-9-1 (13%) and mir-9-2 (33%). In contrast to common HCC the APC and CDH1 (E-cadherin) genes were found devoid of any DNA methylation in FLC, whereas the GSTπ1 gene showed comparable DNA methylation in tumor and surrounding tissue at a moderate level. Changes in global DNA methylation level were measured by analyzing methylation status of the highly repetitive LINE-1 sequences. No evidence of global hypomethylation could be found in FLCs, whereas HCCs without cirrhosis showed a significant reduction in global methylation level as described previously.

Conclusions

FLCs display frequent and distinct gene-specific hypermethylation in the absence of significant global hypomethylation indicating that these two epigenetic aberrations are induced by different pathways and that full-blown malignancy can develop in the absence of global loss of DNA methylation. Only quantitative DNA methylation detection methodology was able to identify these differences.  相似文献   

8.
9.

Aim

Recent evidence suggests that several dietary polyphenols may exert their chemopreventive effect through epigenetic modifications. Curcumin is one of the most widely studied dietary chemopreventive agents for colon cancer prevention, however, its effects on epigenetic alterations, particularly DNA methylation, remain unclear. Using systematic genome-wide approaches, we aimed to elucidate the effect of curcumin on DNA methylation alterations in colorectal cancer cells.

Materials and Methods

To evaluate the effect of curcumin on DNA methylation, three CRC cell lines, HCT116, HT29 and RKO, were treated with curcumin. 5-aza-2′-deoxycytidine (5-aza-CdR) and trichostatin A treated cells were used as positive and negative controls for DNA methylation changes, respectively. Methylation status of LINE-1 repeat elements, DNA promoter methylation microarrays and gene expression arrays were used to assess global methylation and gene expression changes. Validation was performed using independent microarrays, quantitative bisulfite pyrosequencing, and qPCR.

Results

As expected, genome-wide methylation microarrays revealed significant DNA hypomethylation in 5-aza-CdR-treated cells (mean β-values of 0.12), however, non-significant changes in mean β-values were observed in curcumin-treated cells. In comparison to mock-treated cells, curcumin-induced DNA methylation alterations occurred in a time-dependent manner. In contrast to the generalized, non-specific global hypomethylation observed with 5-aza-CdR, curcumin treatment resulted in methylation changes at selected, partially-methylated loci, instead of fully-methylated CpG sites. DNA methylation alterations were supported by corresponding changes in gene expression at both up- and down-regulated genes in various CRC cell lines.

Conclusions

Our data provide previously unrecognized evidence for curcumin-mediated DNA methylation alterations as a potential mechanism of colon cancer chemoprevention. In contrast to non-specific global hypomethylation induced by 5-aza-CdR, curcumin-induced methylation changes occurred only in a subset of partially-methylated genes, which provides additional mechanistic insights into the potent chemopreventive effect of this dietary nutraceutical.  相似文献   

10.
X Shen  Z He  H Li  C Yao  Y Zhang  L He  S Li  J Huang  Z Guo 《PloS one》2012,7(9):e44822

Background

Aberrant DNA methylation plays important roles in carcinogenesis. However, the functional significance of genome-wide hypermethylation and hypomethylation of gene promoters in carcinogenesis currently remain unclear.

Principal Findings

Based on genome-wide methylation data for five cancer types, we showed that genes with promoter hypermethylation were highly consistent in function across different cancer types, and so were genes with promoter hypomethylation. Functions related to “developmental processes” and “regulation of biology processes” were significantly enriched with hypermethylated genes but were depleted of hypomethylated genes. In contrast, functions related to “cell killing” and “response to stimulus”, including immune and inflammatory response, were associated with an enrichment of hypomethylated genes and depletion of hypermethylated genes. We also observed that some families of cytokines secreted by immune cells, such as IL10 family cytokines and chemokines, tended to be hypomethylated in various cancer types. These results provide new hints for understanding the distinct functional roles of genome-wide hypermethylation and hypomethylation of gene promoters in carcinogenesis.

Conclusions

Genes with promoter hypermethylation and hypomethylation are highly consistent in function across different cancer types, respectively, but these two groups of genes tend to be enriched in different functions associated with cancer. Especially, we speculate that hypomethylation of gene promoters may play roles in inducing immunity and inflammation disorders in precancerous conditions, which may provide hints for improving epigenetic therapy and immunotherapy of cancer.  相似文献   

11.

Background

There is an increasing demand for accurate biomarkers for early non-invasive colorectal cancer detection. We employed a genome-scale marker discovery method to identify and verify candidate DNA methylation biomarkers for blood-based detection of colorectal cancer.

Methodology/Principal Findings

We used DNA methylation data from 711 colorectal tumors, 53 matched adjacent-normal colonic tissue samples, 286 healthy blood samples and 4,201 tumor samples of 15 different cancer types. DNA methylation data were generated by the Illumina Infinium HumanMethylation27 and the HumanMethylation450 platforms, which determine the methylation status of 27,578 and 482,421 CpG sites respectively. We first performed a multistep marker selection to identify candidate markers with high methylation across all colorectal tumors while harboring low methylation in healthy samples and other cancer types. We then used pre-therapeutic plasma and serum samples from 107 colorectal cancer patients and 98 controls without colorectal cancer, confirmed by colonoscopy, to verify candidate markers. We selected two markers for further evaluation: methylated THBD (THBD-M) and methylated C9orf50 (C9orf50-M). When tested on clinical plasma and serum samples these markers outperformed carcinoembryonic antigen (CEA) serum measurement and resulted in a high sensitive and specific test performance for early colorectal cancer detection.

Conclusions/Significance

Our systematic marker discovery and verification study for blood-based DNA methylation markers resulted in two novel colorectal cancer biomarkers, THBD-M and C9orf50-M. THBD-M in particular showed promising performance in clinical samples, justifying its further optimization and clinical testing.  相似文献   

12.
13.
14.
15.

Background

Epigenetic changes are emerging as one of the most important events in carcinogenesis. Two alterations in the pattern of DNA methylation in breast cancer (BC) have been previously reported; active estrogen receptor-α (ER-α) is associated with decreased methylation of ER-α target (ERT) genes, and polycomb group target (PCGT) genes are more likely than other genes to have promoter DNA hypermethylation in cancer. However, whether DNA methylation in normal unrelated cells is associated with BC risk and whether these imprints can be related to factors which can be modified by the environment, is unclear.

Methodology/Principal Findings

Using quantitative methylation analysis in a case-control study (n = 1,083) we found that DNA methylation of peripheral blood cell DNA provides good prediction of BC risk. We also report that invasive ductal and invasive lobular BC is characterized by two different sets of genes, the latter particular by genes involved in the differentiation of the mesenchyme (PITX2, TITF1, GDNF and MYOD1). Finally we demonstrate that only ERT genes predict ER positive BC; lack of peripheral blood cell DNA methylation of ZNF217 predicted BC independent of age and family history (odds ratio 1.49; 95% confidence interval 1.12–1.97; P = 0.006) and was associated with ER-α bioactivity in the corresponding serum.

Conclusion/Significance

This first large-scale epigenotyping study demonstrates that DNA methylation may serve as a link between the environment and the genome. Factors that can be modulated by the environment (like estrogens) leave an imprint in the DNA of cells that are unrelated to the target organ and indicate the predisposition to develop a cancer. Further research will need to demonstrate whether DNA methylation profiles will be able to serve as a new tool to predict the risk of developing chronic diseases with sufficient accuracy to guide preventive measures.  相似文献   

16.

Background

Recent genome-wide studies identified a risk locus for colorectal cancer at 18q21, which maps to the SMAD7 gene. Our objective was to confirm the association between SMAD7 SNPs and colorectal cancer risk in the multi-center Colon Cancer Family Registry.

Materials and Methods

23 tagging SNPs in the SMAD7 gene were genotyped among 1,592 population-based and 253 clinic-based families. The SNP-colorectal cancer associations were assessed in multivariable conditional logistic regression.

Results

Among the population-based families, both SNPs rs12953717 (odds ratio, 1.29; 95% confidence interval, 1.12–1.49), and rs11874392 (odds ratio, 0.80; 95% confidence interval, 0.70–0.92) were associated with risk of colorectal cancer. These associations were similar among the population- and the clinic-based families, though they were significant only among the former. Marginally significant differences in the SNP-colorectal cancer associations were observed by use of nonsteroidal anti-inflammatory drugs, cigarette smoking, body mass index, and history of polyps.

Conclusions

SMAD7 SNPs were associated with colorectal cancer risk in the Colon Cancer Family Registry. There was evidence suggesting that the association between rs12953717 and colorectal cancer risk may be modified by factors such as smoking and use of nonsteroidal anti-inflammatory drugs.  相似文献   

17.

Background

Epigenetics, particularly DNA methylation, has recently been elucidated as important in gastric cancer (GC) initiation and progression. We investigated the clinical and prognostic importance of whole blood global and site-specific DNA methylation in GC.

Methods

Genomic DNA was extracted from the peripheral blood of 105 Omani GC patients at diagnosis. DNA methylation was quantified by pyrosequencing of global DNA and specific gene promoter regions at 5 CpG sites for CDH1, 7 CpG sites for p16, 4 CpG sites for p53, and 3 CpG sites for RUNX3. DNA methylation levels in patients were categorized into low, medium, and high tertiles. Associations between methylation level category and clinicopathological features were evaluated using χ2 tests. Survival analyses were carried out using the Kaplan-Meier method and log rank test. A backward conditional Cox proportional hazards regression model was used to identify independent predictors of survival.

Results

Older GC patients had increased methylation levels at specific CpG sites within the CDH1, p53, and RUNX-3 promoters. Male gender was significantly associated with reduced global and increased site-specific DNA methylation levels in CDH1, p16, and p53 promoters. Global DNA low methylation level was associated with better survival on univariate analysis. Patients with high and medium methylation vs. low methylation levels across p16 promoter CpG sites, site 2 in particular, had better survival. Multivariate analysis showed that global DNA hypermethylation was a significant independent predictor of worse survival (hazard ratio (HR) = 2.0, 95% CI: 1.1–3.8; p = 0.02) and high methylation mean values across p16 promoter sites 1–7 were associated with better survival with HR of 0.3 (95% CI, 0.1–0.8; p = 0.02) respectively.

Conclusions

Analysis of global and site-specific DNA methylation in peripheral blood by pyrosequencing provides quantitative DNA methylation values that may serve as important prognostic indicators.  相似文献   

18.
19.

Background

MLL3 is a histone 3- lysine 4 methyltransferase with tumor-suppressor properties that belongs to a family of chromatin regulator genes potentially altered in neoplasia. Mutations in MLL3 were found in a whole genome analysis of colorectal cancer but have not been confirmed by a separate study.

Methods and Results

We analyzed mutations of coding region and promoter methylation in MLL3 using 126 cases of colorectal cancer. We found two isoforms of MLL3 and DNA sequencing revealed frameshift and other mutations affecting both isoforms of MLL3 in colorectal cancer cells and 19 of 134 (14%) primary colorectal samples analyzed. Moreover, frameshift mutations were more common in cases with microsatellite instability (31%) both in CRC cell lines and primary tumors. The largest isoform of MLL3 is transcribed from a CpG island-associated promoter that has highly homology with a pseudo-gene on chromosome 22 (psiTPTE22). Using an assay which measured both loci simultaneously we found prominent age related methylation in normal colon (from 21% in individuals less than 25 years old to 56% in individuals older than 70, R = 0.88, p<0.001) and frequent hypermethylation (83%) in both CRC cell lines and primary tumors. We next studied the two loci separately and found that age and cancer related methylation was solely a property of the pseudogene CpG island and that the MLL3 loci was unmethylated.

Conclusions

We found that frameshift mutations of MLL3 in both CRC cells and primary tumor that were more common in cases with microsatellite instability. Moreover, we have shown CpG island-associated promoter of MLL3 gene has no DNA methylation in CRC cells but also primary tumor and normal colon, and this region has a highly homologous of pseudo gene (psiTPTE22) that was age relate DNA methylation.  相似文献   

20.

Background

Irinotecan (SN38) and oxaliplatin are chemotherapeutic agents used in the treatment of colorectal cancer. However, the frequent development of resistance to these drugs represents a considerable challenge in the clinic. Alus as retrotransposons comprise 11% of the human genome. Genomic toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown.

Results

We applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38 or oxaliplatin resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of ‘DNA methylation entropy’ to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences- especially the Alu Y subfamily. Furthermore, we identified an enrichment of Alu Y sequences that likely results from increased integration of new copies of Alu Y sequence in the drug-resistant cell lines. In the clinical samples, SOX1 and other SOX gene family members were shown to display variable DNA methylation states in their gene regions. The Alu Y sequences showed remarkable variation in DNA methylation states across the clinical samples.

Conclusion

Our findings imply a crucial role of Alu Y in colorectal cancer drug resistance. Our study underscores the complexity of colorectal cancer aggravated by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1552-y) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号