首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
美国、欧盟和中国生物技术药物的比较   总被引:13,自引:1,他引:12  
按照相同表达系统表达的相同氨基酸序列的产品视为同种产品,而不同表达系统表达的相同氨基酸序列的产品视为不同产品的原则,归纳总结了美国、欧盟和中国已批准上市的生物技术药物。美国FDA批准的以基因工程产品、抗体工程产品和细胞工程产品为主要代表的生物技术药物共79种(18种为大肠杆菌表达,8种为酵母表达,53种为哺乳动物细胞培养生产),其中基因重组蛋白质药物为64种。欧盟批准了49种基因重组酶、激素或细胞因子,11种基因重组治疗性抗体和5种基因重组疫苗。在欧美60%-70%的产品由哺乳动物细胞表达。中国批准了27种生物技术药物。比较了美国、欧盟和中国生物制药的特点。  相似文献   

2.
Nearly 30% of currently approved recombinant therapeutic proteins are produced in Escherichia coli. Due to its well-characterized genetics, rapid growth and high-yield production, E. coli has been a preferred choice and a workhorse for expression of non-glycosylated proteins in the biotech industry. There is a wealth of knowledge and comprehensive tools for E. coli systems, such as expression vectors, production strains, protein folding and fermentation technologies, that are well tailored for industrial applications. Advancement of the systems continues to meet the current industry needs, which are best illustrated by the recent drug approval of E. coli produced antibody fragments and Fc-fusion proteins by the FDA. Even more, recent progress in expression of complex proteins such as full-length aglycosylated antibodies, novel strain engineering, bacterial N-glycosylation and cell-free systems further suggests that complex proteins and humanized glycoproteins may be produced in E. coli in large quantities. This review summarizes the current technology used for commercial production of recombinant therapeutics in E. coli and recent advances that can potentially expand the use of this system toward more sophisticated protein therapeutics.  相似文献   

3.
植物分子农场可以利用植物生产具有药物用途的重组蛋白或者次生代谢化合物,应用广泛。随着对动植物中具有药物用途的代谢途径的深入解析,代谢途径中关键限速酶或调控蛋白的功能不断被明确,如何选择植物分子农场的底盘植物和遗传改造途径等问题,特别是如何协同提高植物制药产量与品质一直是植物分子农场体系建立中面临的关键科学问题。综述了药用的植物分子农场的最新研究进展,着重介绍了底盘植物的选择与药用植物分子农场的构建策略,以期为提高分子农场应用效果提供有力的科技支撑。  相似文献   

4.
重组蛋白为疾病治疗提供了新手段,同时创造了可观的经济效益。利用经济作物(主要是烟草)、谷类作物、豆科作物和蔬菜作物生产具有药用价值的重组蛋白是“分子农业”最热门的研究内容。尽管许多重组蛋白已在植物中表达,但只有一小部分已成功投入使用。为了极大地克服限制植物生产重组蛋白发展的问题,研究人员改进表达系统以增加重组蛋白的产量。本文从分析植物产生重组蛋白产量低和/或生物活性低等问题入手,综述了近些年来解决这些问题的优化策略,同时提出了提高植物生产重组蛋白产量的研究方向。  相似文献   

5.
生物制药的现状和未来(二):发展趋势与希望   总被引:10,自引:3,他引:10  
随着基因组和蛋白质组研究的深入,越来越多的与人类疾病发展相关的靶标被确定,使得我们能够研发更精确的药物来防治这些疾病。这意味着生物制药将有更多机会获得突破性进展,最终将使更多更好的生物技术药物被批准上市。综述了生物制药发展的几个趋势,主要有:(1)哺乳动物细胞表达的产品将在相当长的时间内占统治地位;(2)治疗性抗体将会是生物制药领域第二次创新高潮;(3)越来越多分子量大、结构复杂的功能蛋白将被开发成生物技术药物,尤其是用于治疗遗传性疾病的药物;(4)对已批准上市的生物技术药物的化学修饰尤其是PEG化以改善药物性能;(5)通过某些药物的定点突变获得第二代新生物技术药物,如胰岛素、EPO和t-PA的突变体;(6)组织工程、细胞治疗和基因治疗充满了机遇和挑战。  相似文献   

6.
Molecular farming of pharmaceutical proteins   总被引:38,自引:0,他引:38  
Molecular farming is the production of pharmaceutically important and commercially valuable proteins in plants. Its purpose is to provide a safe and inexpensive means for the mass production of recombinant pharmaceutical proteins. Complex mammalian proteins can be produced in transformed plants or transformed plant suspension cells. Plants are suitable for the production of pharmaceutical proteins on a field scale because the expressed proteins are functional and almost indistinguishable from their mammalian counterparts. The breadth of therapeutic proteins produced by plants range from interleukins to recombinant antibodies. Molecular farming in plants has the potential to provide virtually unlimited quantities of recombinant proteins for use as diagnostic and therapeutic tools in health care and the life sciences. Plants produce a large amount of biomass and protein production can be increased using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Transgenic plants can also produce organs rich in a recombinant protein for its long-term storage. This demonstrates the promise of using transgenic plants as bioreactors for the molecular farming of recombinant therapeutics, including vaccines, diagnostics, such as recombinant antibodies, plasma proteins, cytokines and growth factors. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Drug‐resistant tuberculosis (TB) has a high mortality rate. Most medicines used to treat it are poorly tested and have terrible side effects. Activists have campaigned for patients with drug‐resistant TB to have access to experimental drugs, particularly one called bedaquiline, before these have been approved by regulatory authorities such as the Food and Drug Administration (FDA) in the United States (US) and the Medicines Control Council (MCC) in South Africa. Some activists have also campaigned for bedaquiline to be approved by regulatory authorities before testing of the drug is completed. These campaigns raise ethical concerns about whether patients should be offered experimental, unapproved, medicines for the treatment of life‐threatening illnesses, and if authorities should approve drugs for life‐threatening illnesses when vital questions about safety and efficacy remain outstanding.  相似文献   

8.
Plant-based material, protein and biodegradable plastic   总被引:3,自引:0,他引:3  
Fibrous proteins from spiders, proteins with synthetic multiple repeats and mammalian structural proteins such as collagen have been produced in transgenic plants. Recent advances in the production of biodegradable plastic in plants also show the potential of molecular farming for research into and production of materials. Selection of a growing variety of such products, optimization of expression, and the development of effective purification strategies will further promote this growing field of biotechnology.  相似文献   

9.
Antibody molecular farming in plants and plant cells   总被引:1,自引:0,他引:1  
`Molecular Farming' is a novel approach to the production of pharmaceuticals, where valuable recombinant proteins can be produced in transgenic organisms on an agricultural scale. Plants have been traditionally used as a source of medicines, but the use of transgenic plants in molecular farming represents a novel source of molecular medicines that include plasma proteins, enzymes, growth factors, vaccines and recombinant antibodies. Until recently, the wide use of these molecular medicines was limited because of the difficulty in producing these proteins outside animals or animal cell cultures. The application of molecular biology and plant biotechnology in the 1990s showed that many molecular medicines could be synthesised in plants. The goal of this Molecular Farming technology is to produce pharmaceuticals that are safer, easier to produce and less expensive than those produced in animals or microbial cultures. Here, we examine the production of recombinant antibodies by Molecular Farming.  相似文献   

10.
Accumulated knowledge of genomic information, systems biology, and disease mechanisms provide an unprecedented opportunity to elucidate the genetic basis of diseases, and to discover new and novel therapeutic targets from the wealth of genomic data. With hundreds to a few thousand potential targets available in the human genome alone, target selection and validation has become a critical component of drug discovery process. The explorations on quantitative characteristics of the currently explored targets (those without any marketed drug) and successful targets (targeted by at least one marketed drug) could help discern simple rules for selecting a putative successful target. Here we use integrative in silico (computational) approaches to quantitatively analyze the characteristics of 133 targets with FDA approved drugs and 3120 human disease genes (therapeutic targets) not targeted by FDA approved drugs. This is the first attempt to comparatively analyze targets with FDA approved drugs and targets with no FDA approved drug or no drugs available for them. Our results show that proteins with 5 or fewer number of homologs outside their own family, proteins with single-exon gene architecture and proteins interacting with more than 3 partners are more likely to be targetable. These quantitative characteristics could serve as criteria to search for promising targetable disease genes.  相似文献   

11.
《MABS-AUSTIN》2013,5(5):415-416
Therapeutic antibodies have captured substantial attention due to the relatively high rate at which these products reach marketing approval, and the subsequent commercial success they frequently achieve. In the 2000s, a total of 20 antibodies (18 full-length IgG and 2 Fab) were approved by the Food and Drug Administration (FDA) or European Medicines Agency (EMA). In the 2010s to date, an additional 3 antibodies (denosumab, belimumab, ipilimumab) have been approved and one antibody-drug conjugate (brentuximab vedotin) is undergoing regulatory review and may be approved in the US by August 30, 2011. However, a less heralded group of antibody-based therapeutics comprising proteins or peptides fused with an Fc is following the success of classical antibodies.  相似文献   

12.
Plant molecular farming: systems and products   总被引:19,自引:0,他引:19  
Plant molecular farming is a new and promising industry involving plant biotechnology. In this review, we describe several diverse plant systems that have been developed to produce commercially useful proteins for pharmaceutical and industrial uses. The advantages and disadvantages of each system are discussed. The first plant-derived molecular farming products have reached the marketplace and other products are poised to join them during the next few years. We explain the rationale for using plants as biofactories. We also describe the products currently on the market, and those that appear likely to join them in the near future. Lastly, we discuss the issue of public acceptance of molecular farming products.Communicated by P.P. Kumar  相似文献   

13.
结核病诊断一直是控制结核病疫情的关键,快速准确、敏感特异、简便低廉的诊断方法是目前迫切需要的.从结核分枝杆菌快速诊断噬菌体法、AMPLICOR(R) MTB试验、Gen-Probe分子生物学诊断方法到T-SPOT.TB和QuantiFeron-Gold Test免疫学检测方法,结核病实验诊断方法在不断改进和完善.近年来...  相似文献   

14.
Imagine a world in which any protein, either naturally occurring or designed by man, could be produced safely, inexpensively and in almost unlimited quantities using only simple nutrients, water and sunlight. This could one day become reality as we learn to harness the power of plants for the production of recombinant proteins on an agricultural scale. Molecular farming in plants has already proven to be a successful way of producing a range of technical proteins. The first plant-derived recombinant pharmaceutical proteins are now approaching commercial approval, and many more are expected to follow.  相似文献   

15.
Antibody production by molecular farming in plants   总被引:7,自引:0,他引:7  
"Molecular farming" is the production of pharmaceutical proteins in transgenic plants and has great potential for the production of therapeutic anti-cancer antibodies and recombinant therapeutic proteins. Plants make fully functional recombinant human or animal antibodies. Cultivating transgenic plants on an agricultural scale will produce almost unlimited supplies of recombinant proteins for uses in medicine. Combinatorial library technology is a key tool for the generation and optimisation of therapeutic antibodies ahead of their expression in plants. Optimised antibody expression can be rapidly verified using transient expression assays in plants before creation of transgenic suspension cells or plant lines. Subcellular targeting signals that increase expression levels and optimise protein stability can be identified and exploited using transient expression to create high expresser plant lines. When high expresser lines have been selected, the final step is the development of efficient purification methods to retrieve functional antibody. Antibody production on an industrial scale is then possible using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Recombinant proteins can be produced either in whole plants or in seeds and tubers, which can be used for the long-term storage of both the protein and its production system. The review will discuss these developments and how we are moving toward the molecular farming of therapeutic antibodies becoming an economic and clinical reality.  相似文献   

16.
17.
Many reporter genes, such as gfp, gusA, and lacZ, are widely used for research into plants, animals, and microorganisms. Reporter genes, which offer high levels of sensitivity and convenience of detection, have been utilized in transgenic technology, promoter analysis, drug screening, and other areas. Directed molecular evolution is a powerful molecular tool for the creation of designer proteins for industrial and research applications, including studies of protein structure and function. Directed molecular evolution is based mainly on in vitro recombination methods, such as error-prone PCR and DNA shuffling. The strategies of directed evolution of enzyme biocatalysts have been the subject of several recent reviews. Here, we briefly summarize successes in the field of directed molecular evolution of reporter genes and discuss some of the applications.  相似文献   

18.
This paper provides an overview of the U.S. regulatory framework governing genetic biocontrol efforts for invasive fish. Genetic biocontrol refers to the intentional release of genetically modified organisms (GMOs) into the environment to control a target population of a non-native species. The terms “genetically modified” and “genetically engineered” are often used interchangeably, despite the scientific distinctions. A GMO is an organism that has had its genetic material altered or modified by humans through any method, including conventional breeding. Genetic engineering, as defined by the Food and Drug Administration (FDA), is the use of recombinant DNA techniques to introduce new characteristics or traits into an organism. GE organisms are therefore a subset of GMOs. As this paper will discuss, existing laws focus on GE organisms raising significant questions as to whether organisms modified without utilizing rDNA techniques fall within the jurisdiction of any federal agency. Under the 1986 Coordinated Framework for Regulation of Biotechnology, three federal agencies have primary responsibility over biotechnology—the Environmental Protection Agency (EPA), the U.S. Department of Agriculture, and the FDA. Because the EPA has exempted biological control agents from regulation as pesticides and no fish species are currently considered plant pests, the FDA is the agency responsible for approving the use of genetically engineered fish for biocontrol. FDA regulates genetically engineered animals through its New Animal Drug Application (NADA) process. The NADA process presents several challenges to effective and transparent regulation of genetic biocontrol, including the FDA’s focus on drug safety, secrecy provisions potentially limiting disclosure of the results of environmental reviews, and the secondary role of the Fish and Wildlife Service, the federal agency with the most experience with invasive species management. In addition, relying on the NADA process creates a significant regulatory gap as NADA approval is only required for GE organisms. The regulatory framework for GMOs created for genetic biocontrol without rDNA technology is unclear and primary responsibility may fall to the states. Given its extensive experience with hatcheries, invasive fish species control, and environmental reviews, the Fish and Wildlife Service (FWS) is the more appropriate agency to review applications for genetic biocontrol. Efforts should be undertaken now, while genetic biocontrol is still in the theoretical stages, to increase the role of the FWS in the permitting process either through formal regulations or more informal mechanisms such as memorandum of understanding.  相似文献   

19.
Lactoferrin, an iron-binding protein found in high concentrations in mammalian exocrine secretions, is an important component of the host defense system. It is also a major protein of the secondary granules of neutrophils from which is released upon activation. Due to its potential clinical utility, recombinant human lactoferrin (rhLF) has been produced in various eukaryotic expression systems; however, none of these are fully compatible with humans. Most of the biopharmaceuticals approved by the FDA for use in humans are produced in mammalian expression systems. The Chinese hamster ovary cells (CHO) have become the system of choice for proteins that require post-translational modifications, such as glycoproteins.  相似文献   

20.
The molecular breeding of plants that have been genetically engineered for improved disease resistance and stress tolerance has been undertaken with the goal of improving food production. More recently, it has been realized that transgenic plants can serve as bioreactors for the production of proteins or compounds with industrial or clinical uses. Several different recombinant enzymes and antibodies have been produced in this manner. To maximize the potential of industrial plants as a production system for proteins, efficient expression systems utilizing promoters that optimize transgene expression, 5′-untranslated region elements for efficient translation, and appropriate post-translational modifications and localization must be developed. This review summarizes successful examples of the production of recombinant enzymes, antibodies, and vaccines using signal peptides that direct vesicular localization in transgenic plants. We further discuss the modulation of recombinant protein localization to the endoplasmic reticulum, vacuolar system, or extracellular compartments by varying the signal peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号