首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function and evolution of Wnt genes in arthropods   总被引:1,自引:0,他引:1  
Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution.In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally.We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution.  相似文献   

2.
The Drosophila bithorax complex Abdominal-B (Abd-B) gene specifies parasegmental identity at the posterior end of the fly. The specific pattern of Abd-B expression in each parasegment (PS) determines its identity and, in PS10-13, Abd-B expression is controlled by four parasegment-specific cis-regulatory domains, iab-5 to iab-8, respectively. In order to properly determine parasegmental identity, these four cis-regulatory domains must function autonomously during both the initiation and maintenance phases of BX-C regulation. The studies reported here demonstrate that the (centromere) distal end of iab-7 domain is delimited by the Fab-8 boundary. Initiators that specify PS12 identity are located on the proximal iab-7 side of Fab-8, while initiators that specify PS13 identity are located on the distal side of Fab-8, in iab-8. We use transgene assays to demonstrate that Fab-8 has enhancer blocking activity and that it can insulate reporter constructs from the regulatory action of the iab-7 and iab-8 initiators. We also show that the Fab-8 boundary defines the realm of action of a nearby iab-8 Polycomb Response Element, preventing this element from ectopically silencing the adjacent domain. Finally, we demonstrate that the insulating activity of the Fab-8 boundary in BX-C is absolutely essential for the proper specification of parasegmental identity by the iab-7 and iab-8 cis-regulatory domains. Fab-8 together with the previously identified Fab-7 boundary delimit the first genetically defined higher order domain in a multicellular eukaryote.  相似文献   

3.
Summary Cuticular terraces are found in a number of decapod families. In four examples investigations have been made of terrace pattern, terrace morphology, morphogenetic processes, ontogenetic development, and function. InGrapsus grapsus the terrace pattern on carapace and appendages remains constant during ontogeny and the terraces function as frictional resistances in crevices, aiding to escape from avian predators. Histological investigations explain the morphogenetic processes leading to terrace formation.Galathea squamifera has essentially the same terrace pattern and ontogeny asGrapsus, the terraces have the same mechanical function directed against aquatic predators.Gecarcinus lateralis has terraces on the ventral parts of the carapace, their numbers are secondarily increased during ontogeny, and they function as a frictional resistance facilitating the transport of loose substrate in burrowing. InEmerita, the carapace terraces are multiplied during ontogeny and function again as frictional resistance increasing the efficiency of burrowing in sandy substrate. From these results it can be assumed that cuticular terraces in arthropods always function as a frictional resistance in interaction with a solid or loose substrate.
Zusammenfassung Kutikularterrassen finden sich in einer Anzahl von Dekapoden-Familien. Vier Beispiele wurden hinsichtlich Terrassenmuster, Terrassenmorphologie, Morphogenese, ontogenetischer Entwicklung und Funktion untersucht. BeiGrapsus grapsus bleibt das Terrassenmuster auf Carapax und ExtremitÄten wÄhrend der Ontogenese konstant, die Terrassen fungieren als Widerlager in Felsspalten, um ein Herausziehen durch Fre\feinde zu verhindern. Durch histologische Untersuchungen konnte der morphogenetische Proze\ der Terrassen-Replikation geklÄrt werden.Galathea squamifera besitzt im wesentlichen dasselbe Terrassenmuster und zeigt dieselbe ontogenetische Entwicklung wieGrapsus; die Terrassen haben dieselbe mechanische Funktion, die hier gegen aquatische RÄuber gerichtet ist.Gecarcinus lateralis besitzt Terrassen auf den ventralen Teilen des Carapax, ihre Anzahl wird wÄhrend der Ontogenese vermehrt, sie fungieren als Widerlager beim Transport von Lockersubstrat wÄhrend des Grabvorganges. BeiEmerita werden die Carapaxterrassen wÄhrend der Ontogenese ebenfalls vermehrt, wiederum fungieren sie als Widerlager gegenüber einem Lockersubstrat, wodurch dem Eingraben im Brandungssand eine höhere EffektivitÄt verliehen wird. Diese Ergebnisse erlauben den Schlu\, da\ Kutikularterrassen bei Arthropoden immer als mechanisches Widerlager fungieren, das zur Verankerung gegenüber einem festen oder lockeren Substrat dient.


Konstruktionsmorphologie Nr. 83; Nr. 82 s. M. Spindler, J. Foram. Res. (in press)

This study is part of a research program on constructional morphology of cuticular structures in recent and fossil arthropods being conducted and financed by the Sonderforschungsbereich 53 at the Institut und Museum für Geologie und PalÄontologie, University of Tübingen (Germany).

My sincere thanks are due to the following persons and institutions: Prof. A. Seilacher, Dr. W.E. Reif, and Dr. F. Fürsich (Geological Institute, Tübingen) for constructive discussions and criticism throughout the present research program; Prof. G. Mertins (Giessen), and Dr. B. Werding and Dr. F. Köster (Instituto Colombo-Aleman de Investigaciones Cientificas, Santa Marta, Colombia, S.A.) for the opportunity to conduct laboratory and field studies on living decapods on the Caribbean coast of Colombia; Dr. L. Tiefenbacher (München) for the permission to examine the decapod material of the Zoologische Sammlung des Bayerischen Staates; Dipl. Biol. M. Türkay (Frankfurt) for identifying decapod material, for helpful discussions on the ecology of decapods, and for providing the opportunity to investigate decapod material in the Senckenberg-Museum. The macrophotographs were made, with considerable technical enthusiasm, by W. Wetzel (Tübingen).  相似文献   

4.
The equine zeta globin gene locus consists of an intact 5' gene and a truncated 3' pseudogene (psi zeta) that has only 5' control sequences and a first exon and intron. Nevertheless, the psi zeta gene has retained almost perfect homology with its neighbour, presumably by gene conversion. The first introns of both zeta and psi zeta genes contain a number of degenerate tandem repeats of a 14 base-pair sequence that has been found in the zeta genes of goats and humans and that is related to a family of human minisatellite sequences. Comparisons of sequences flanking the zeta and psi zeta genes reveal areas of considerable interspecies homology, which can be explained by a zeta gene duplication that pre-dated the mammalian radiation.  相似文献   

5.
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.  相似文献   

6.
Structure, function, and evolution of ferritins.   总被引:22,自引:0,他引:22  
The ferritins of animals and plants and the bacterioferritins (BFRs) have a common iron-storage function in spite of differences in cytological location and biosynthetic regulation. The plant ferritins and BFRs are more similar to the H chains of mammals than to mammalian L chains, with respect to primary structure and conservation of ferroxidase center residues. Hence they probably arose from a common H-type ancestor. The recent discovery in E. coli of a second type of iron-storage protein (FTN) resembling ferritin H chains raises the question of what the relative roles of these two proteins are in this organism. Mammalian L ferritins lack ferroxidase centers and form a distinct group. Comparison of the three-dimensional structures of mammalian and invertebrate ferritins, as well as computer modeling of plant ferritins and of BFR, indicate a well conserved molecular framework. The characterisation of numerous ferritin homopolymer variants has allowed the identification of some of the residues involved in iron uptake and an investigation of some of the functional differences between mammalian H and L chains.  相似文献   

7.
The Rhizopus oryzae species complex is a group of zygomycete fungi that are common, cosmopolitan saprotrophs. Some strains are used beneficially for production of Asian fermented foods but they can also act as opportunistic human pathogens. Although R. oryzae reportedly has a heterothallic (+/-) mating system, most strains have not been observed to undergo sexual reproduction and the genetic structure of its mating locus has not been characterized. Here we report on the mating behavior and genetic structure of the mating locus for 54 isolates of the R. oryzae complex. All 54 strains have a mating locus similar in overall organization to Phycomyces blakesleeanus and Mucor circinelloides (Mucoromycotina, Zygomycota). In all of these fungi, the minus (-) allele features the SexM high mobility group (HMG) gene flanked by an RNA helicase gene and a TP transporter gene (TPT). Within the R. oryzae complex, the plus (+) mating allele includes an inserted region that codes for a BTB/POZ domain gene and the SexP HMG gene. Phylogenetic analyses of multiple genes, including the mating loci (HMG, TPT, RNA helicase), ITS1-5.8S-ITS2 rDNA, RPB2, and LDH genes, identified two distinct groups of strains. These correspond to previously described sibling species R. oryzae sensu stricto and R. delemar. Within each species, discordant gene phylogenies among multiple loci suggest an outcrossing population structure. The hypothesis of random-mating is also supported by a 50:50 ratio of plus and minus mating types in both cryptic species. When crossed with tester strains of the opposite mating type, most isolates of R. delemar failed to produce zygospores, while isolates of R. oryzae produced sterile zygospores. In spite of the reluctance of most strains to mate in vitro, the conserved sex locus structure and evidence for outcrossing suggest that a normal sexual cycle occurs in both species.  相似文献   

8.
9.
Proteins are composed of evolutionary units called domains; the majority of proteins consist of at least two domains. These domains and nature of their interactions determine the function of the protein. The roles that combinations of domains play in the formation of the protein repertoire have been found by analysis of domain assignments to genome sequences. Additional findings on the geometry of domains have been gained from examination of three-dimensional protein structures. Future work will require a domain-centric functional classification scheme and efforts to determine structures of domain combinations.  相似文献   

10.
Structure, function and evolution of bacterial ferredoxins   总被引:33,自引:0,他引:33  
  相似文献   

11.
12.
Homothallic Didymella zeae-maydis undergoes sexual reproduction by selfing. Sequence analysis of the mating type (MAT) locus from this fungus revealed that MAT carries both MAT1-1-1 and MAT1-2-1 genes found in heterothallic Dothideomycetes, separated by ~1.0 kb of noncoding DNA. To understand the mechanistic basis of homothallism in D. zeae-maydis, each of the MAT genes was deleted and the effects on selfing and on ability to cross in a heterothallic manner were determined. The strain carrying an intact MAT1-1-1 but defective MAT1-2-1 gene (MAT1-1-1MAT1-2-1) was self-sterile, however strains carrying an intact MAT1-2-1 but defective MAT1-1-1 gene (ΔMAT1-1-1;MAT1-2-1), when selfed, showed delayed production of a few ascospores. Attempts to cross the two MAT deletion strains yielded fewer ΔMAT1-1-1;MAT1-2-1 than MAT1-1-1MAT1-2-1 progeny and very few ascospores overall compared to WT selfs. This study demonstrates that, as in the other homothallic Dothideomycetes, both MAT genes are required for full fertility, but that, in contrast to other cases, the presence of a single MAT1-2-1 gene can induce homothallism, albeit inefficiently, in D. zeae-maydis.  相似文献   

13.
The signal recognition particle (SRP) is a ribonucleoprotein particle essential for the targeting of signal peptide-bearing proteins to the prokaryotic plasma membrane or the eukaryotic endoplasmic reticulum membrane for secretion or membrane insertion. SRP binds to the signal peptide emerging from the exit site of the ribosome and forms a ribosome nascent chain (RNC)-SRP complex. The RNC-SRP complex then docks in a GTP-dependent manner with a membrane-anchored SRP receptor and the protein is translocated across or integrated into the membrane through a channel called the translocon. Recently considerable progress has been made in understanding the architecture and function of SRP.  相似文献   

14.
Mitochondria are derived from free-living alpha-proteobacteria that were engulfed by eukaryotic host cells through the process of endosymbiosis, and therefore have their own DNA which is organized using basic proteins to form organelle nuclei (nucleoids). Mitochondria divide and are split amongst the daughter cells during cell proliferation. Their division can be separated into two main events: division of the mitochondrial nuclei and division of the matrix (the so-called mitochondrial division, or mitochondriokinesis). In this review, we first focus on the cytogenetical relationships between mitochondrial nuclear division and mitochondriokinesis. Mitochondriokinesis occurs after mitochondrial nuclear division, similar to bacterial cytokinesis. We then describe the fine structure and dynamics of the mitochondrial division ring (MD ring) as a basic morphological background for mitochondriokinesis. Electron microscopy studies first identified a small electron-dense MD ring in the cytoplasm at the constriction sites of dividing mitochondria in the slime mold Physarum polycephalum, and then two large MD rings (with outer cytoplasmic and inner matrix sides) in the red alga Cyanidioschyzon merolae. Now MD rings have been found in all eukaryotes. In the third section, we describe the relationships between the MD ring and the FtsZ ring descended from ancestral bacteria. Other than the GTPase, FtsZ, mitochondria have lost most of the proteins required for bacterial cytokinesis as a consequence of endosymbiosis. The FtsZ protein forms an electron transparent ring (FtsZ or Z ring) in the matrix inside the inner MD ring. For the fourth section, we describe the dynamic association between the outer MD ring with a ring composed of the eukaryote-specific GTPase dynamin. Recent studies have revealed that eukaryote-specific GTPase dynamins form an electron transparent ring between the outer membrane and the MD ring. Thus, mitochondriokinesis is thought to be controlled by a mitochondrial division (MD) apparatus including a dynamic trio, namely the FtsZ, MD and dynamin rings, which consist of a chimera of rings from bacteria and eukaryotes in primitive organisms. Since the genes for the MD ring and dynamin rings are not found in the prokaryotic genome, the host genomes may make these rings to actively control mitochondrial division. In the fifth part, we focus on the dynamic changes in the formation and disassembly of the FtsZ, MD and dynamin rings. FtsZ rings are digested during a later period of mitochondrial division and then finally the MD and dynamin ring apparatuses pinched off the daughter mitochondria, supporting the idea that the host genomes are responsible for the ultimate control of mitochondrial division. We discuss the evolution, from the original vesicle division (VD) apparatuses to VD apparatuses including classical dynamin rings and MD apparatuses. It is likely that the MD apparatuses involving the dynamic trio evolved into the plastid division (PD) apparatus in Bikonta, while in Opisthokonta, the MD apparatus was simplified during evolution and may have branched into the mitochondrial fusion apparatus. Finally, we describe the possibility of intact isolation of large MD/PD apparatuses, the identification of all their proteins and their related genes using C. merolae genome information and TOF-MS analyses. These results will assist in elucidating the universal mechanism and evolution of MD, PD and VD apparatuses.  相似文献   

15.
16.
The question concerning reasons for the variety of ribosomal proteins that arose for more than 40 years ago is still open. Ribosomes of modern organisms contain 50–80 individual proteins. Some are characteristic for all domains of life (universal ribosomal proteins), whereas others are specific for bacteria, archaea, or eucaryotes. Extensive information about ribosomal proteins has been obtained since that time. However, the role of the majority of ribosomal proteins in the formation and functioning of the ribosome is still not so clear. Based on recent data of experiments and bioinformatics, this review presents a comprehensive evaluation of structural conservatism of ribosomal proteins from evolutionarily distant organisms. Considering the current knowledge about features of the structural organization of the universal proteins and their intermolecular contacts, a possible role of individual proteins and their structural elements in the formation and functioning of ribosomes is discussed. The structural and functional conservatism of the majority of proteins of this group suggests that they should be present in the ribosome already in the early stages of its evolution.  相似文献   

17.
Plant O-methyltransferases (OMTs) constitute a large family of enzymes that methylate the oxygen atom of a variety of secondary metabolites including phenylpropanoids, flavonoids, and alkaloids. O-Methylation plays a key role in lignin biosynthesis, stress tolerance, and disease resistance in plants. To gain insights into the evolution of the extraordinary diversity of plant O-methyltransferases, and to develop a framework phylogenetic tree for improved prediction of the putative function of newly identified OMT-like gene sequences, we performed a comparative and phylogenetic analysis of 61 biochemically characterized plant OMT protein sequences. The resulting phylogenetic tree revealed two major groups. One of the groups included two sister clades, one comprising the caffeoyl CoA OMTs (CCoA OMTs) that methylate phenolic hydroxyl groups of hydroxycinnamoyl CoA esters, and the other containing the carboxylic acid OMTs that methylate aliphatic carboxyl groups. The other group comprised the remaining OMTs, which act on a diverse group of metabolites including hydroxycinnamic acids, flavonoids, and alkaloids. The results suggest that some OMTs may have undergone convergent evolution, while others show divergent evolution. The high number of unique conserved regions within the CCoA OMTs and carboxylic acid OMTs provide an opportunity to design oligonucleotide primers to selectively amplify and characterize similar OMT genes from many plant species.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号