首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of Saccharomyces cerevisiae grown in media with an initial pH of 2.5–6.0, acidified with a strong acid (HCl), exhibited the highest plasma membrane H+-ATPase-specific activity at an initial pH of 6.0. At a lower pH (above pH 2.5) ATPase activity (62–83% of the maximum level) still allowed optimal growth. At pH 2.5, ATPase activity was about 30% of the maximum value and growth was impaired. Quantitative immunoassays showed that the content of ATPase protein in the plasma membrane was similar across the entire pH range tested, although slightly lower at pH 2.5. The decrease of plasma membrane ATPase activity in cells grown at low pH was partially accounted for by its in vitro stability, which decreased sharply at pH below 5.5, although the reduction of activity was far below the values expected from in vitro measurements. Yeast growth under acid stress changed the pattern of gene expression observed at optimal pH. The level of mRNA from the essential plasma-membrane-ATPase-encoding gene PMA1 was reduced by 50% in cells grown at pH 2.5 as compared with cells grown at the optimal pH 5.0, although the content of ATPase in the plasma membrane was only modestly reduced. As observed in response to other kinds of stress, the PMA2 promoter at the optimal pH was up to eightfold more efficient in cells grown at pH 2.5, although it remained several hundred times less efficient than that of the PMA1 gene. Received: 22 April 1996 / Accepted: 6 August 1996  相似文献   

2.
Altered expression of the H+ ATPase in Streptococcus faecalis membranes   总被引:4,自引:0,他引:4  
Evidence is presented that expression of the H+ ATPase in S. faecalis is influenced by the extracellular pH and K+ level during growth. Altered expression was detected by assay of F1 ATPase and electrophoretic analysis of membrane proteins. K+-limited growth caused about a 2-fold increase in the F1 ATPase. The effect of growth at pH 6, 7 and 9 was studied. Compared to cells grown at pH 7, growth at pH 6 increased the F1 ATPase about 2-fold while growth at pH 9 reduced the F1 ATPase by nearly 4-fold. The elevated F1 ATPase activity in the pH 6 cells was associated with an increase in the F1 ATPase alpha and beta subunits in the membrane while the decrease in F1 ATPase in the pH 9 cells was associated with a marked loss of the alpha subunit. It is suggested that intracellular protons may act as effectors which regulate expression of the F1F0 gene cluster at the level of translation.  相似文献   

3.
AggregatingDictyostelium cells release protons when stimulated with cAMP. To find out whether the protons are generated by acidic vesicles or in the cytosol, we permeabilized the cells and found that this did not alter the cAMP-response. Proton efflux in intact cells was inhibited by preincubation with the V-type H+ ATPase inhibitor concanamycin A and with the plasma membrane H+ ATPase blocker miconazole. Surprisingly, miconazole also inhibited efflux in permeabilized cells, indicating that this type of H+ ATPase is present on intracellular vesicles as well. Vesicular acidification was inhibited by miconazole and by concanamycin A, suggesting that the acidic vesicles contain both V-type and P-type H+ ATPases. Moreover, concanamycin A and miconazole acted in concert, both in intact cells and in vesicles. The mechanism of cAMP-induced Ca2+-fluxes involves phospholipase A2 activity. Fatty acids circumvent the plasma membrane and stimulate vesicular Ca2+-efflux. Here we show that arachidonic acid elicited H+-efflux not only from intact cells but also from acidic vesicles. The target of regulation by arachidonic acid seemed to be the vesicular Ca2+-relase channel.  相似文献   

4.
In situ plasma membrane H+-ATPase activity was monitored during pH-regulated dimorphism of Candida albicans using permeabilized cells. ATPase activity was found to increase in both the bud and germ tube forming populations at 135 min which coincides with the time of evagination. Upon reaching the terminal phenotype the mycelial form exhibited higher H+-ATPase activity as compared to the yeast form. At the time of evagination H+-efflux exhibited an increase. K+ depletion resulted in attenuated ATPase activity and glucose induced H+-efflux. The results demonstrate that ATPase may play a regulatory role in dimorphism of C. albicans and K+ acts as a modulator.Abbreviations PM Plasma membrane - pHi intracellular pH - Pi inorganic phosphorus - TET Toluene: Ethanol: Triton X-100  相似文献   

5.
PMA1 expression, plasma membrane H(+)-ATPase enzyme kinetics, and the distribution of the ATPase have been studied in carbon-starved Candida albicans induced with glucose for yeast growth at pH 4.5 and for germ tube formation at pH 6.7. PMA1 expression parallels expression of the constitutive ADE2 gene, increasing up to sixfold during yeast growth and twofold during germ tube formation. Starved cells contain about half the concentration of plasma membrane ATPase of growing cells. The amount of plasma membrane ATPase is normalized prior to either budding or germ tube emergence by the insertion of additional ATPase molecules, while ATPase antigen appears uniformly distributed over the entire plasma membrane surface during both growth phases. Glucose addition rapidly activates the ATPase twofold regardless of the pH of induction. The turnover of substrate molecules per second by the enzyme in membranes from budding cells quickly declines, but the enzyme from germ tube-forming cells maintains its turnover of substrate molecules per second and a higher affinity for Mg-ATP. The plasma membrane ATPase of C. albicans is therefore regulated at several levels; by glucose metabolism/starvation-related factors acting on gene expression, by signals generated through glucose metabolism/starvation which are thought to covalently modify the carboxyl-terminal domain of the enzyme, and possibly by additional signals which may be specific to germ tube formation. The extended period of intracellular alkalinization associated with germ tube formation may result from regulation of proton-pumping ATPase activity coupled with higher ratios of cell surface to effective cytosolic volume.  相似文献   

6.
Plasma membrane ATPase activity of Saccharomyces cerevisiae IGC 3507III grown in the presence of the lipophilic acid octanoic acid [4-50 mg l-1 (0.03-0.35 mM), pH 4.0] was 1.5-fold higher than that in cells grown in its absence. The Km for ATP, the pH profile and the sensitivity to orthovanadate of the basal and the activated forms of the membrane ATPase were identical. This activation was closely associated with a decrease in the biomass yield and an increase in the ethanol yield, and was rapidly reversed in vivo after removal of the acid. However, the activated level was preserved when membranes were extracted and subjected to manipulations which eliminated or decreased octanoic acid incorporation in the plasma membrane. The activity of the basal plasma membrane ATPase in the total membrane fraction was slightly increased by incubation at pH 6.5 with octanoic acid at 100 mg l-1 or less (2.4 mg acid form plus 97.6 mg octanoate ion l-1). However, destruction of the permeability barrier between the enzyme and its substrate could not explain the in vivo activation. A role for plasma membrane ATPase activation in the regulation of the intracellular pH (pHi) of cells grown with octanoic acid was not proven.  相似文献   

7.
Intracellular pH must be kept close to neutrality to be compatible with cellular functions, but the mechanisms of pH homeostasis and the responses to intracellular acidification are mostly unknown. In the plant Arabidopsis thaliana, we found that intracellular acid stress generated by weak organic acids at normal external pH induces expression of several chaperone genes, including ROF2, which encodes a peptidyl‐prolyl cis‐trans isomerase of the FK506‐binding protein class. Loss of function of ROF2, and especially double mutation of ROF2 and the closely related gene ROF1, results in acid sensitivity. Over‐expression of ROF2 confers tolerance to intracellular acidification by increasing proton extrusion from cells. The activation of the plasma membrane proton pump (H+‐ATPase) is indirect: over‐expression of ROF2 activates K+ uptake, causing depolarization of the plasma membrane, which activates the electrogenic H+ pump. The depolarization of ROF2 over‐expressing plants explains their tolerance to toxic cations such as lithium, norspermidine and hygromycin B, whose uptake is driven by the membrane potential. As ROF2 induction and intracellular acidification are common consequences of many stresses, this mechanism of pH homeostasis may be of general importance for stress tolerance.  相似文献   

8.
Intracellular pH distribution and transmembrane pH profile of yeast cells   总被引:1,自引:0,他引:1  
The pH-dependent fluorescence excitation of fluorescein located intracellularly and in the vicinity of cells of the yeast Saccharomyces cerevisiae and Endomyces magnusii was used to obtain local pH values at a linear resolution 0.2 micron. Cells suspended in water or in a diluted (5 mM) acidic buffer had a relatively alkaline interior (about 7.0-7.5) with pH decreasing gradually toward the periphery and further out through the cell wall to the value of the bulk solution. In slightly alkaline weak buffers the cells also showed an alkaline center and a slightly acidic ring-shaped area, but the peripheral region close to the membrane was again alkaline with pH increasing toward the bulk solution. The heterogeneity of intracellular pH was reduced or nearly abolished in starved or antimycin-treated cell. Suspension of cells in strong (200 mM) buffer resulted within 15-20 min in a nearly homogeneous pH pattern throughout the cell, attaining pH values of 5.5-7.5, depending on the pH of the buffer. Addition of glucose with concomitant pH decrease of the extracellular medium did not change appreciably the intracellular pattern for 20-30 min, except with diethylstilbestrol (inhibitor of proton-extruding ATPase) when the cell became more acidic. It appears that the delta pH measurements between the cell as a whole and the bulk solution (as are used for the calculation of the electrochemical potential of protons in proton-driven transports) are not substantiated, the probable pH difference across the plasma membrane being substantially smaller than previously supposed.  相似文献   

9.
The light-induced H+ efflux observed at acidic pH in Cyanidiumcells was shown to be an active H+ transport depending on theintracellular ATP produced by cyclic photo-phosphorylation.Triton X-100 was found to act as an effective uncoupler in intactCyanidium cells without collapsing the pH gradient across theplasma membrane. Triton X-100 at 0.015% significantly reducedthe intracellular ATP levels, stimulated the p-BQ, Hill reactionand completely inhibited the light-induced H+ efflux. Inhibitionof the H+ efflux by Triton X-100 correlated well with the depressionof the apparent rale of light-induced ATP synthesis as wellas the decrease in the intracellular ATP level in light. The light-induced H+ efflux was completely inhibited by diethylstilbestrol,a specific inhibitor of plasma membrane ATPase, without anychanges in the intracellular ATP level, thereby suggesting theparticipation of the plasma membrane ATPase in the light-inducedH+ efflux. 1The data in this paper are included in the Ph. D. dissertationsubmitted by M. Kura-Hotta to Tokyo Metropolitan University. (Received February 3, 1984; Accepted June 14, 1984)  相似文献   

10.
The effect of orthovanadate on the uptake of phosphate by agedpotato tuber tissue was investigated to study the relationshipwith plasma membrane ATPase activity. Vanadate inhibited therate of phosphate uptake by aged discs with a maximum effectat 500 µM (58% inhibition). When vanadate was added tothe ageing medium for 24 h, the subsequent rate of phosphateuptake was also markedly decreased (68% inhibition). The resultsshow that the inhibition by vanadate was not due to enhancedleakage of phosphate nor to a non-specific toxic effect. Furthermore,complementary experiments with erythrosin B and molybdate wereconsistent with the hypothesis that vanadate acts specificallyon the plasma membrane ATPase and that this enzyme is involvedin maintaining the driving force for active uptake of phosphate(via co-transport with protons) by storage cells of potato tubers. Key words: Proton-phosphate co-transport, vanadate, plasma membrane ATPase, unloading  相似文献   

11.
The transmembranal potential, in Saccharomyces cerevisiae, has been calculated from the distribution of the lipophilic cation tetraphenylphosphonium (TPP+) between the intracellular and extracellular water. Trifluoperazine at concentrations of 10 to 50 μM, caused a substantial increase in the membrane potential (negative inside). This increase was observed only in the presence of a metabolic substrate and was eliminated by the addition of the protonophores 2,4-dinitrophenol and sodium azide, removal of glucose, replacement of glucose by the nonmetabolizable analog 3-O-methyl glucose, or by the addition of 100mM KCl. An increase in 45CaCl2 accumulation from solutions of low concentrations (1 μM) was observed under all conditions where membrane potential was increased. Proton ejection activity was monitored by measurements of the rates of the decrease in the pH of unbuffered cell suspensions in the presence of glucose. Trifluoperazine inhibited the changes in medium pH; this inhibition was not the result of an increase in the permeability of cell membranes to protons since in the absence of glucose, trifluoperazine did not cause a change in the rate of pH change generated by proton influx. The activity of plasma membrane ATPase was measured in crude membrane preparations in the presence of sodium azide to inhibit mitochondrial ATPase. Trifluoperazine strongly inhibited the activity of the plasma membrane ATPase. The effect of phenothiazines on transport and on membrane potential reported in this study and in the previous one (Eilam, Y. (1983) Biochim. Biophys. Acta 733, 242–248) were observed only in the presence of a metabolic substrate. The possibility that energy is required for the uptake of phenothiazines into the cells was eliminated by results showing energy-independent uptake of [3H]chlorpromazine. The results strongly suggest that phenothiazines activate energy-dependent K+-extrusion pumps, which lead to increased membrane potential. Increased influx of calcium seems to be energized by membrane potential, and therefore stimulated under all conditions where membrane potential is increased. The analog which does not bind to calmodulin, trifluoperazine sulfoxide, had no effect on the cells, but the involvement of calmodulin in the processes altered by trifluoperazine cannot as yet, be determined.  相似文献   

12.
大豆下胚轴质膜H+-ATPase质子转运的测定   总被引:4,自引:0,他引:4  
以大豆下胚轴为材料,采用改进的匀浆介质,通过两相法制得具有质子转运活力的高纯度质膜微囊.并且发现冻融处理可以促进质膜微囊的翻转而提高荧光猝灭效率.质子载体和质子转运特性分析表明,由Mg2+-ATP引发的荧光猝灭可以被质子载体CCCP恢复,并被质子通道抑制剂DCCD抑制;并且发现质膜H-ATPase专一抑制剂钒酸钠可以完全抑制荧光猝灭,同时发现荧光猝灭依赖于Mg2+,并受K刺激,最适pH为6.5.以上证明所测荧光猝灭是由质膜H-ATPase所进行的质子转运引起的.结果同时表明,维持H-ATPase合适构象和提高质膜微囊封闭性是制备具有H转运活力质膜微囊的两个关键因素.  相似文献   

13.
Potassium ion pool was studied in glycolyzing Enterococcus hirae, grown at high or low alkaline pH (pH 9.5 and 8.0, respectively). Energy-dependent increase of K+ pool was lower for the wild-type cells, grown at pH 9.5, than that for the cells grown at pH 8.0. It was inhibited by N,N′-dicyclohexylcarbodiimide (DCCD). The stoichiometry of DCCD-inhibited K+ influx to DCCD-inhibited H+ efflux for the wild-type cells, grown at pH 9.5 or 8.0, was fixed for different K+ external activity. DCCD-inhibited ATPase activity of membrane vesicles was significantly stimulated by K+ for the wild-type cells grown at pH 9.5, and required K+ for the wild-type cells grown at pH 8.0, while the levels of α and β subunits of the F1 and b subunit of the F0 were lower for the cells grown at pH 9.5 than that for the cells grown at pH 8.0. Such an ATPase activity was residual in membrane vesicles from the atpD mutant with a nonfunctional F0F1. ATPase activity of membrane vesicles from the mutant with defect in Na+-ATPase was higher for the cells grown at pH 9.5 than that for the cells grown at pH 8.0, and was inhibited by DCCD. An energy-dependent increase of K+ pool in this bacterium, grown at a high or low alkaline pH, is assumed to occur through a K+ uptaking system, most probably the Trk. The latter functions in a closed relationship with the H+-translocating ATPase F0F1. Received: 30 June 1997 / Accepted: 4 August 1997  相似文献   

14.
Effects of vanadate on the plasma membrane ATPase of red beet and corn   总被引:15,自引:14,他引:1       下载免费PDF全文
The effect of vanadate on the plant plasma membrane ATPase were investigated in plasma membrane fractions derived from corn roots (Zea mays L.) and red beets (Beta vulgaris L.). The Ki for vanadate inhibition of the plasma membrane ATPase from corn roots and red beets was between 6 and 15 micromolar vanadate. In both membrane fractions, 80% to 90% of the total ATPase was inhibited at vanadate concentrations below 100 micromolar. Vanadate inhibition was optimal at pH 6.5, enhanced by the presence of K+, and was partially reversed by 1 millimolar EDTA. The Mg:ATP kinetics for the plasma membrane ATPase were hyperbolic in both the absence and presence of vanadate. Vanadate decreased both the Km and Vmax of the red beet plasma membrane ATPase, indicating that vanadate inhibits the ATPase uncompetitively. These results indicate many similarities with respect to vanadate inhibition between the plant plasma membrane ATPase and other major iontranslocating ATPases from fungal and animal cells. The high sensitivity to vanadate reported here, however, differs from other reports of vanadate inhibition of the plant plasma membrane ATPase from corn, beets, and in some instances oats.  相似文献   

15.
16.
Recent studies have revealed that the action of the proton-translocating ATPase of the plasma membrane of yeast is an important determinant of several stress tolerances and affects the capacity of cells to synthesise heat shock proteins in response to heat shock [Panaretou, B. & Piper, P. W. (1990) J. Gen. Microbiol. 136, 1763-1770; Coote, P. J., Cole, M. B. & Jones, M. V. (1991) J. Gen. Microbiol. 137, 1701-1708]. This study investigated the changes to the protein composition of the Saccharomyces cerevisiae plasma membrane that result from a heat shock to dividing cultures and the entry to stationary growth caused by carbon source limitation. Plasma membranes were prepared from exponential, heat-shocked and stationary yeast cultures. The proteins of these membrane preparations were then analysed by polyacrylamide gel electrophoresis and immunoblot measurement of ATPase levels. The protein composition of plasma membranes displayed two prominent changes in response to both heat shock and the entry to stationary phase: (a) a reduction in the level of the plasma membrane ATPase; and (b) the acquisition of a previously uncharacterised 30 kDa heat-shock protein (hsp30). The ATPase decline with heat shock probably exerts an important influence over the ability of the cell to maintain ATPase activity, and therefore intracellular pH, during extended periods of stress. Through in vivo pulse-labelling of plasma membrane proteins synthesised before and during heat shock, followed by subcellular fractionation, it was shown that hsp30 is the only protein induced by the yeast heat-shock response that substantially copurifies with plasma membranes. It might therefore exert a stress-protective function specifically at this membrane.  相似文献   

17.
It was shown that the proton conductivity of Escherichia coli membranes depends on pH and other conditions of bacterial growth. It is considerably lower in cells fermenting glucose and accomplishing the nitrate-nitrite respiration compared with cells accomplishing the oxygen respiration. Proton conductivity increases substantially with decreasing pH of medium. It was found that proton conductivity is related to the redox and membrane potentials of cells. The energy-dependent flux of protons from cells and the ATPase activity of membrane vesicles considerably vary depending on whether bacteria are grown under aerobic or anaerobic conditions. The H+ flux from cells fermenting glucose (pH 7.5) was 1.7 times greater than the H+ flux from cells that accomplish the nitrate-nitrite and oxygen respiration. The N,N'-dicyclohexylcarbodiimide (DCCD)-sensitive ATPase activity increased 2.5 times as K+ concentration increased to 100 mM (including residual K+ in potassium-free medium). The DCCD-sensitive ATPase activity considerably decreased with decreasing pH of medium, whereas the ATPase activity that was not suppressed by DCCD was stimulated. These results can be used for establishing the relationship between membrane proton conductivity and the energy-dependent H+ flux and ATPase activity.  相似文献   

18.
19.
Professional phagocytic cells such as macrophages are a central part of innate immune defence. They ingest microorganisms into membrane‐bound compartments (phagosomes), which acidify and eventually fuse with lysosomes, exposing their contents to a microbicidal environment. Gram‐positive Rhodococcus equi can cause pneumonia in young foals and in immunocompromised humans. The possession of a virulence plasmid allows them to subvert host defence mechanisms and to multiply in macrophages. Here, we show that the plasmid‐encoded and secreted virulence‐associated protein A (VapA) participates in exclusion of the proton‐pumping vacuolar‐ATPase complex from phagosomes and causes membrane permeabilisation, thus contributing to a pH‐neutral phagosome lumen. Using fluorescence and electron microscopy, we show that VapA is also transferred from phagosomes to lysosomes where it permeabilises the limiting membranes for small ions such as protons. This permeabilisation process is different from that of known membrane pore formers as revealed by experiments with artificial lipid bilayers. We demonstrate that, at 24 hr of infection, virulent Requi is contained in a vacuole, which is enriched in lysosome material, yet possesses a pH of 7.2 whereas phagosomes containing a vapA deletion mutant have a pH of 5.8 and those with virulence plasmid‐less sister strains have a pH of 5.2. Experimentally neutralising the macrophage endocytic system allows avirulent Requi to multiply. This observation is mirrored in the fact that virulent and avirulent Requi multiply well in extracts of purified lysosomes at pH 7.2 but not at pH 5.1. Together these data indicate that the major function of VapA is to generate a pH‐neutral and hence growth‐promoting intracellular niche. VapA represents a new type of Gram‐positive virulence factor by trafficking from one subcellular compartment to another, affecting membrane permeability, excluding proton‐pumping ATPase, and consequently disarming host defences.  相似文献   

20.
A single-gene nuclear mutant has been selected from the yeast Schizosaccharomyces pombe for growth resistance to Dio-9, a plasma membrane H+-ATPase inhibitor. From this mutant, called pma1, an ATPase activity has been purified. It contains a Mr = 100,000 major polypeptide which is phosphorylated by [gamma-32P] ATP. Proton pumping is not impaired since the isolated mutant ATPase is able, in reconstituted proteoliposomes, to quench the fluorescence of the delta pH probe 9-amino-6-chloro-2-methoxy acridine. The isolated mutant ATPase is sensitive to Dio-9 as well as to seven other plasma membrane H+-ATPase inhibitors. The mutant H+-ATPase activity tested in vitro is, however, insensitive to vanadate. Its Km for MgATP is modified and its ATPase specific activity is decreased. The pma1 mutation decreases the rate of extracellular acidification induced by glucose when cells are incubated at pH 4.5 under nongrowing conditions. During growth, the intracellular mutant pH is more acid than the wild type one. The derepression by ammonia starvation of methionine transport is decreased in the mutant. The growth rate of pma1 mutants is reduced in minimal medium compared to rich medium, especially when combined to an auxotrophic mutation. It is concluded that the H+-ATPase activity from yeast plasma membranes controls the intracellular pH as well as the derepression of amino acid, purine, and pyrimidine uptakes. The pma1 mutation modifies several transport properties of the cells including those responsible for the uptake of Dio-9 and other inhibitors (Ulaszewski, S., Coddington, A., and Goffeau, A. (1986) Curr. Genet. 10, 359-364).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号