首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Further evidence that there is more than one adrenal 21-hydroxylase system   总被引:1,自引:0,他引:1  
The 21-hydroxylase activity of microsomes isolated from bovine adrenal cortex have been assayed using [21-3H]17-hydroxypregnenolone and [1,2-3H]17-hydroxyprogesterone as substrates. When the assays are performed in the presence of an NADH regenerating system, to inhibit steroid 3 beta-hydroxy isomerase-dehydrogenase activity, the microsomes oxidize the 3 beta-hydroxy-5-ene steroid at a rate of 0.37 nmol/min.nmol cytochrome P-450 and the 3-keto-4-ene steroid at a rate of 6.4 nmol/min.nmol. When the microsomes are solubilized with Triton CF-54 they lose the ability to oxidize the 3-hydroxy-5-ene steroid, while the specific activity of the microsomes for the 3-keto-4-ene steroid is enhanced 3-fold. In contrast, when the microsomes are solubilized with sodium cholate, their specific activity towards the 4-ene steroid is decreased by 50% while the specific activity for a low concentration of the 5-ene steroid, 1 microM, is unchanged. In addition, when the oxidations of the labeled steroids (at 1 microM) by the microsomes, are examined in the presence of unlabeled 17-hydroxyprogesterone (at 20 microM) the oxidation of the 3-keto-4-ene steroid is inhibited by 92% while the oxidation of the 3 beta-hydroxy-5-ene steroid is only inhibited by 20%. These results all suggest that there are at least two 21-hydroxylases in bovine adrenal tissue, one of which can utilize the 3-keto-4-ene steroids only, the other of which, in addition, can utilize the 3 beta-hydroxy-5-ene steroids as substrates.  相似文献   

3.
1. The specificity of 3 oestradiol-binding proteins was studied. Two of these proteins are naturally occurring (rat alpha-foetoprotein and rat liver microsomal 17beta-hydroxy steroid dehydrogenase) and the third is an artificially induced model, anti-(oestradiol-6-carboxymethyloxime-bovine serum albumin) gamma-globulins. 2. A specific binding procedure for each protein model permitted a determination of its affinity for oestradiol and for 30 other steroids. 3. The results obtained have brought to light the different areas of the steroid molecule that are important for its recognition by each of the three proteins. The two naturally occurring proteins (alpha-foetoprotein and 17beta-hydroxy steroid dehydrogenase) recognize the edge of the steroid defined by C-4, C-6, C-8 and C-15. On the other hand, the gamma-globulins recognize the opposite edge, i.e. that defined by C-2, C-10, C-11 and C-17. 4. Diethylstilboestrol, whose structure is analogous to that of a steroid, is only recognized by the two naturally occurring proteins.  相似文献   

4.
1. An assay for demethylation has been developed based on the release of tritium from 4,4-dimethyl[3alpha-(3)H]cholest-7-en-3beta-ol (II). 2. The maximum release of (3)H from 3alpha-(3)H-labelled compound (II) in a rat liver microsomal preparation occurs in the presence of NADPH and NAD(+) under aerobic conditions. 3. Incubation of 3alpha-(3)H-labelled compound (II) with NADPH under aerobic conditions leads to the formation of a 3alpha-(3)H-labelled C-4 carboxylic acid. This compound undergoes dehydrogenation on subsequent anaerobic incubation with NAD(+). 4. The (3)H released from the steroid was located in [4-(3)H]nicotinamide and the medium. Incubation with synthetic [4-(3)H(2)]NADH gave a similar result. 5. In the presence of glutamate dehydrogenase and alpha-oxoglutarate part of the (3)H released from the steroid was transferred to glutamate. 6. A series of 3-oxo steroids were reduced equally well by [4-(3)H(2)]NADH and [4-(3)H(2)]NADPH. The reduction of 5alpha-cholest-7-en-3-one was shown to use the 4B H atom from the nucleotide. 7. 3':5'-Cyclic AMP was shown to be a competitive inhibitor of the 3beta-hydroxy dehydrogenase enzyme in the demethylation reaction.  相似文献   

5.
Rabbits have been injected with 4-14C-labelled progesterone, deoxycorticosterone and corticosterone and the corresponding 20 beta-3H-reduced steroids (20-dihydro steroids) in order to compare the influence of oxidation at C-20 on the excretion of steroid acids. Both 20 beta-reduced progesterone and deoxycorticosterone were extensively oxidized at C-20 and metabolized to 20-oxo-21-oic acids devoid of tritium. A small proportion of the acidic metabolites of [20 beta-3H]dihydro deoxycorticosterone retained tritium. By contrast the majority of the metabolites of [20 beta-3H]dihydro corticosterone were tritiated and [11 beta,20 beta-3H]-dihydroxy-4-pregnene-3-one-21-oic acid was identified as a major acidic metabolite. These results indicate that the presence of a 11 beta-hydroxyl in 20 beta-dihydro corticosterone inhibits oxidation at C-20 and provides evidence for the direct oxidation of this corticosteroid at C-21 in this species.  相似文献   

6.
Synthesis of reference standards is needed to determine the presence and function of steroid glucuronides in the brain or other tissues, because commercial sources of steroid glucuronide standards are limited or unavailable. In the present study porcine, rat, and bovine liver microsomes were tested to evaluate their ability to glucuronidate eight neurosteroids and neuroactive steroids of various types: dehydroepiandrosterone, pregnenolone, isopregnanolone, 5alpha-tetrahydrodeoxycorticosterone, corticosterone, cortisol, beta-estradiol, and testosterone. In general, the glucuronidation efficiency of rat liver was rather poor compared with that of bovine and porcine liver microsomes. Since porcine liver apparently has a relatively large amount of dehydrogenase, its microsomes also produced dehydrogenated steroids and their glucuronides, as well as various regioisomers in which the site of glucuronidation varied. In contrast, bovine liver microsomes produced mainly a single major glucuronidation product and few dehydrogenation products and gave the best overall yield for two-third of the steroids tested. The enzymatic synthesis of five glucuronides of four steroids was carried out and the conditions, purification, and analytical methods for the glucuronidation products were optimized. The steroid glucuronides synthesized were characterized by nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography-mass spectrometry (LC-MS). The stereochemically pure steroid glucuronide conjugates were recovered in milligram amounts (yield 10-78%) and good purity (>85-90%), which is sufficient for LC-MS/MS method development and analyses of steroid glucuronides in biological matrices such as brain, urine, or plasma.  相似文献   

7.
C G Eriksson  P Eneroth 《Steroids》1990,55(8):366-372
The generation of 6-oxygenated (6 beta-hydroxy, 6 beta-hydroperoxy, and 6-oxo) progesterone derivatives during the hydrolysis of progesterone-3-ethanolimine has been shown to be increased in the presence of xanthine/xanthine oxidase. The combination of xanthine/xanthine oxidase with other enzymes and/or reagents that catalyze transformation (or formation) of oxygen radicals suggested that the most likely oxygen species participating in the 6-oxygenation was the protonated acid of the superoxide anion, i.e., the hydroperoxy radical. The suggestion was further supported by experiments with oxygen scavengers. However, the data presented do not rule out a radical propagation reaction since the steroid compound used may be more reactive than the scavengers tested. A stimulation of 6-oxygenation of progesterone-3-ethanolimine by NADPH-supplemented rat liver microsomes was found. This reaction was inhibited by the only oxygen scavenger (reduced glutathione) found to be effective in the xanthine/xanthine oxidase experiments. The similarities between the two oxygenation systems may implicate a mechanism for 6 beta-hydroperoxidation of 3-oxo-4-ene steroids in rat liver microsomes.  相似文献   

8.
The mechanism of isomerization of delta 5-3-ox steroids to delta 4-3-oxo steroids was examined by using the membrane-bound 3-oxo steroid delta 4-delta 5-isomerase (EC 5.3.3.1) and the 3 beta-hydroxy steroid dehydrogenase present in the microsomal fraction obtained from full-term human placenta. (1) Methods for the preparation of androst-5-ene-3 beta, 17 beta-diol specifically labelled at the 4 alpha-, 4 beta- or 6-positions are described. (2) Incubations with androst-5-ene-3 beta, 17 beta-diol stereospecifically 3H-labelled either in the 4 alpha- or 4 beta-position showed that the isomerization reaction occurs via a stereospecific elimination of the 4 beta hydrogen atom. In addition, the complete retention of 3H in the delta 4-3-oxo steroids obtained from [4 alpha-3H]androst-5-ene-3 beta, 17 beta-diol indicates that the non-enzymic contribution to these experiments was negligible. (3) To study the stereochemistry of the insertion of the incoming proton at C-6, the [6-3H]androst-4-ene-3, 17-dione obtained from the oxidation isomerization of [6-3H]androst-5-ene-3 beta, 17 beta-diol was enzymically hydroxylated in the 6 beta-position by the fungus Rhizopls stolonifer. Retention of 3H in the 6 alpha-position of the isolated 6 beta-hydroxyandrost-4-ene-3, 17-dione indicates that in the isomerase-catalysed migration of the C(5) = C(6) double bond, the incoming proton from the acidic group on the enzyme must enter C-6 from the beta-face, forcing the existing 3H into the 6 alpha-position.  相似文献   

9.
1. The 17beta-hydroxy steroid dehydrogenase was solubilized during haemolysis of erythrocytes and was isolated from the membrane-free haemolysate. Membrane preparations isolated in different ways did not contain 17beta-hydroxy steroid dehydrogenase activity. The 17beta-hydroxy steroid dehydrogenase activity in the haemolysate was concentrated by repeated ammonium sulphate precipitation and gel filtration on Sephadex G-150. The 17beta-hydroxy steroid dehydrogenase activity of the purified preparation per unit weight of protein was 350-3000 times higher than the activity of the crude erythrocyte haemolysate. The 20alpha-hydroxy steroid dehydrogenase activity was lost during this purification procedure. 2. The 17beta-hydroxy steroid dehydrogenase was NADP-dependent and had a pH optimum for conversion of testosterone between 8.5 and 10. For the molecular weight of the enzyme a value of 64000 was calculated from Sephadex chromatography results. 3. p-Chloromercuribenzoate inhibited the enzymic activity. The oxidative activity of the enzyme for the 17beta-hydroxyl group was only partly inhibited when a large excess of 17-oxo steroids was added. The catalysing activity of the enzyme was influenced by the NADP(+)/NADPH ratio. The oxidation of the 17beta-hydroxyl group in the presence of NADP(+) proceeded faster than the reduction of the 17-oxo group with NADPH. When both reduced and oxidized cofactors were present the oxidation of the 17beta-hydroxyl group was inhibited to a considerable extent. 4. The enzyme had a broad substrate specificity and not only catalysed the conversion of androstanes with a 17beta-hydroxyl group, or 17-oxo group, but also the conversion oestradiolleft arrow over right arrowoestrone. In addition the steroid conjugates dehydroepiandrosterone sulphate and oestrone sulphate were also converted. There were no indications that more than one 17beta-hydroxy steroid dehydrogenase was present in the partially purified preparation.  相似文献   

10.
Glycyrrhetic acid, derived from a main component of liquorice, was converted to 3-ketoglycyrrhetic acid reversibly by rat liver homogenates in the presence of NADPH or NADP+. Glycyrrhetic acid-oxidizing and 3-ketoglycyrrhetic acid-reducing activities were localized in microsomes among the subcellular fractions of rat liver. Glycyrrhetic acid-oxidizing activity and 3-ketoglycyrrhetic acid-reducing activities showed pH optima at 6.3 and 8.5, respectively, and required NADP+ or NAD+ and NADPH or NADH, respectively, indicating that these activities were due to glycyrrhetinate dehydrogenase. The dehydrogenase was not solubilized from the membranes by the treatment with 1 M NaCl or sonication, indicating that the enzyme is a membrane component. The dehydrogenase was solubilized with detergents such as Emalgen 913, Triton X-100 and sodium cholate, and then separated from 3β-hydroxysteroid dehydrogenase (5β-androstan-3β-ol-17-one-oxidizing activity) by butyl-Toyopearl 650 M column chromatography. Partially purified enzyme catalyzed the reversible reaction between glycyrrhetic acid and 3-ketoglycyrrhetic acid, but was inactive toward 3-epiglycyrrhetic acid and other steroids having the 3β-hydroxyl group. The enzyme required NADP+ and NADPH for the highest activities of oxidation and reduction, respectively, and NAD+ and NADH for considerable activities, similar to the results with microsomes. From these results the enzyme is defined as glycyrrhetinate dehydrogenase, being quite different from 3β-hydroxysteroid dehydrogenase of Ruminococcus sp. from human intestine, which is active for both glycyrrhetic acid and steroids having the 3β-hydroxyl group.  相似文献   

11.
It has been shown previously that liver microsomal steroid 5 alpha-reductase activity increases with age in female but not male rats, which coincides with a female-specific, age-dependent decline in the cytochrome P-450-dependent oxidation of testosterone to 1 beta-, 2 alpha-, 2 beta-, 6 alpha-, 6 beta-, 7 alpha-, 15 beta-, 16 alpha-, 16 beta-, and 18-hydroxytestosterone and androstenedione. To determine whether the increase in steroid 5 alpha-reductase activity is responsible for the decrease in testosterone oxidation, we have examined the effects of the steroid 5 alpha-reductase inhibitor, 4-MA (17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one), on the pathways of testosterone oxidation catalyzed by rat liver microsomes. We have also determined which hydroxytestosterone metabolites are substrates for steroid 5 alpha-reductase. At concentrations of 0.1 to 10 microM, 4-MA completely inhibited steroid 5 alpha-reductase activity without inhibiting the pathways of testosterone oxidation catalyzed by liver microsomes from rats of different age and sex, and from rats induced with phenobarbital or pregnenolone-16 alpha-carbonitrile. 4-MA (10 microM) had little or no effect on the oxidation of testosterone catalyzed by liver microsomes from mature male rats (which have low steroid 5 alpha-reductase activity). In contrast, the hydroxylated testosterone metabolites formed by liver microsomes from mature female rats (which have high steroid 5 alpha-reductase activity) accumulated to a much greater extent in the presence of 4-MA. Evidence is presented that 4-MA increases the accumulation of hydroxytestosterones by two mechanisms. First, 4-MA inhibited the 5 alpha-reduction of those metabolites (such as 6 beta-hydroxytestosterone) that were found to be excellent substrates for steroid 5 alpha-reductase. In the absence of 4-MA, these metabolites eventually disappeared from incubations containing liver microsomes from mature female rats. Second, 4-MA inhibited the formation of 5 alpha-dihydrotestosterone, which otherwise competed with testosterone for oxidation by cytochrome P-450. This second mechanism explains why 4-MA increased the accumulation of metabolites (such as 7 alpha-hydroxytestosterone) that were found to be poor substrates for steroid 5 alpha-reductase. Despite its marked effect on the accumulation of hydroxylated testosterone metabolites, 4-MA had no effect on their initial rate of formation by liver microsomes from either male or female rats.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The chromatographic behaviour of an avian oestradiol-17 beta dehydrogenase, the 3(17) beta-hydroxy steroid dehydrogenase from Pseudomonas testosteroni and cortisone reductase from Streptomyces dehydrogenans was studied on columns of p-(phenoxypropoxy)aniline attached to CNBr-activated Sepharose. The ligand was effective in adsorbing the oestradiol dehydrogenase from a partially purified extract of chicken liver, and the cortisone reductase was perferentially retained when mixtures of the three dehydrogenases were applied to columns in 10mM-buffer. Under these conditions the 3(17)beta-hydroxy steroid dehydrogenase was eluted in the front, but was adsorbed in the presence of 3 M-KCl. beta-N-Acetylglucosaminidase present in the liver preparation was not retained by the ligand, whereas lactate dehydrogenase from rabbit muscle was adsorbed in a manner similar to the retention pattern found on affinity chromatography with 2',5'-ADP--Sepharose. The mean overall purification of the oestradiol dehydrogenase was 13-fold, with a mean recovery of 53%. p-(Phenoxypropoxy)aniline offers promise for the purification of steroid-transforming enzymes where elution with substrate or cofactor is not wanted. It is also suggested that the ligand may be of service in the purification of receptors of hormonal steroids.  相似文献   

13.
21-Diazo-4-methyl-4-aza-5 alpha-pregnane-3,20-dione (Diazo-MAPD) inhibits steroid 5 alpha-reductase in liver microsomes of female rats with a Ki value of 8.7 +/- 1.7 nM, and the inhibition is competitive with testosterone. It also inhibits the binding of a 5 alpha-reductase inhibitor, [3H] 17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA), to the enzyme in liver microsomes. The inhibition of 5 alpha-reductase activity and of inhibitor binding activity by diazo-MAPD becomes irreversible upon UV irradiation. [1,2-3H]Diazo-MAPD binds to a single high affinity site (Kd 8 nM, 125 pmol binding sites/mg of protein) in liver microsomes of female rats, and this binding requires NADPH. Without UV irradiation, this binding is reversible, and it becomes irreversible upon UV irradiation. Both the initial reversible binding and the subsequent irreversible conjugation after UV irradiation are inhibited by inhibitors (diazo-MAPD and 4-MA) and substrates (progesterone and testosterone) of 5 alpha-reductase, but they are not inhibited by 5 alpha-reduced steroids (5 alpha-dihydrotestosterone and 5 alpha-androstan-3 alpha, 17 beta-diol). NADPH stimulates the binding of [3H] diazo-MAPD to microsomes of male rat liver and prostate. UV irradiation also induces conjugation of [3H] diazo-MAPD to these microsomes. Photoaffinity labeled liver microsomes of female rats were solubilized and fractionated by high performance gel filtration. The radioactive conjugate eluted in one major peak at Mr 50,000.  相似文献   

14.
Cholesterol: oxygen oxidoreductase [EC 1.1.3.6] from Brevibacterium sterolicum (ATCC 21387) was found to catalyze the oxidation of steroids such as sterols, steroid hormones, and bile acids having a free C-3beta hydroxyl group. However, the enzyme was inactive towards estradiol and estriol and had a weak activity towards steroids with functional groups adjacent to the 3beta-hydroxyl group on the steroid nucleus. Variation in the length of the side chain of 3beta-hydroxy steroids had no marked effect on the activity. 3beta-Hydroxy bile acids with delta4 or delta5 were oxidized to almost the same extent as cholesterol. In contrast, 3beta-hydroxy bile acids without delta4 or delta5 were oxidized only to the extent of 1.4--2.1%. 3 beta-Hydroxychol-4 or 5-enoic acid was oxidized in the same way as cholesterol. This enzyme is useful as a simple tool for identification of 3 beta-hydroxy groups of bile acids.  相似文献   

15.
The metabolism of [4-(14)C]oestrone and of [6,7-(3)H(2)]oestrone sulphate was studied during cyclic perfusion and once-through perfusion of the isolated rat liver. The following results were obtained. 1. As shown by once-through perfusion, the two steroids are metabolized differently during the first passage through the organ. [4-(14)C]Oestrone was taken up by the liver and partly delivered as oestradiol-17beta and oestriol into the medium. After uptake of [6,7-(3)H(2)]oestrone sulphate, only oestrone, liberated by hydrolysis, was delivered into the medium; no oestradiol-17beta or oestriol could be detected in the medium after one passage through the organ. This indicates that intracellular oestrone, which was taken up as such, and oestrone, which derived from intracellular hydrolysis, may be metabolized in different compartments of the liver cell. 2. The results of the cyclic perfusion showed that intracellular oestrone is preferentially conjugated with glucuronic acid, and subsequently excreted into the bile. Intracellular oestrone sulphate is preferably reduced to oestradiol sulphate, thus indicating that oestrone sulphate is a better substrate for the 17beta-hydroxy steroid oxidoreductase than is oestrone. 3. Albumin-bound oestrone sulphate acts as a large reservoir, and in contrast with free oestrone is protected from enzyme attack by its strong binding to albumin. 4. Oestrone sulphate is partly converted into the hormonally active oestrone by liver tissue. This suggests that liver not only inactivates oestrogens, but also provides the organism with oestrone, which is subsequently readily taken up by other organs.  相似文献   

16.
1. The distribution of 3 beta-hydroxy steroid dehydrogenase was examined in the subcellular fractions of granulosa cells collected from the ovary of the domestic fowl. 2. 3 beta-hydroxy steroid dehydrogenase activity was observed in the mitochondrial (4000g for 20min) and microsomal (105 000g for 120min) fractions. 3. Approximately three times more 3 beta-hydroxy steroid dehydrogenase activity was associated with the cytochrome oxidase activity (a mitochondrial marker enzyme) in anteovulatory-follicle granulosa cells than with that of the postovulatory follicle. 4. Comparison of the latent properties of mitochondrial 3 beta-hydroxy steroid dehydrogenase with those of cytochrome oxidase and isocitrate dehydrogenase indicated that 3 beta-hydroxy steroid dehydrogenase is located extramitochondrially. 5. This apparent distribution of 3 beta-hydroxy steroid dehydrogenase is explained on the basis that the mitochondrial activity is either an artefact caused by a redistribution in the subcellular location of the enzyme, occurring during homogenization, or by the existence of a functionally heterogeneous endoplasmic reticulum that yields particles of widely differing sedimentation properties.  相似文献   

17.
The relationships between structure and inhibitory potency toward microsomal cytochrome P-450 (P-450)-mediated androst-4-ene-3,17-dione hydroxylase activities were investigated in rat liver with a series of 5 alpha- and 5 beta-androstane derivatives. 5 beta-Reduced steroids (containing a cis-A/B ring junction) were more potent inhibitors than the 5 alpha-reduced epimers (containing a trans-A/B ring junction) except in the case of the 17 beta-hydroxy-substituted derivatives. The most effective inhibitor was 5 beta-androstane-3 beta-ol which exhibited I50 values of 7 and 27 microM against androstenedione 16 alpha- and 6 beta-hydroxylase activities, which are catalysed by P-450 IIC11 and IIIA2, respectively. In general, these two pathways of steroid hydroxylation were more susceptible to inhibition than the 7 alpha- and 16 beta-hydroxylase pathways. The 7 alpha-hydroxylase enzyme (P-450 IIA1) was only inhibited by 5 beta-reduced steroids that contained an oxygenated function at C17. All of the test compounds elicited type I spectral binding interactions with P-450 in oxidised microsomes. The most effective steroid inhibitors generally exhibited the greatest capacity to interact with P-450. Additional studies with one of the more potent compounds, 5 beta-androstane-3 beta-ol-17-one, revealed that the inhibition kinetics were competitive and that preincubation of the inhibitor with NADPH-supplemented microsomes prior to substrate (androstenedione) addition decreased the extent of inhibition observed. These findings are consistent with the assertion that the inhibition of hepatic steroid hydroxylases by 5 beta-androstanes involves an effective competitive interaction with the steroid substrate at the P-450 active site. Since the relative overproduction of 5 beta-reduced metabolites of certain androgens has been reported in clinical conditions, such as androgen insensitivity, it now appears important to investigate the hepatic drug oxidation capacity of patients with hormonal abnormalities.  相似文献   

18.
Incubation of rat liver microsomes with norethindrone and a NADPH-generating system leads to the formation of one N-alkylated porphyrin (green pigment, GP1). Administration of this steroid to male rats in vivo results in the formation of three more-polar green pigments (GP2, 3 and 4). A cytosolic protein (green-pigment converting protein) has been purified from rat liver that, when added to liver microsomal mixtures containing norethindrone (0.03 mM) and a NADPH-generating system, results in the formation of all four green pigments (GP1, 2, 3 and 4). Field-desorption mass spectrometry of the purified green pigments gave protonated molecules, [M + H]+, at m/z 905 for GP1, m/z 909 for GP2, m/z 925 for GP3 and 4. The Mr of the purified cytosolic protein on SDS/polyacrylamide-gel electrophoresis or gel filtration was 37000. Polyacrylamide-gel isoelectric focusing gave a pI value of 5.9. Antibodies raised in rabbits against this protein, after preincubation with rat liver cytosol, subsequently prevented the formation of the more-polar norethindrone-induced green pigments (GP2, 3 and 4). The purified protein in the presence of either NADH or NADPH catalysed the reduction of delta 4-ring-reduced norethindrone, 5 alpha-oestran-17 alpha-ethynyl-17 beta-ol-3-one and, with the appropriate cofactor, the oxidation and reduction of steroids lacking the ethynyl function, e.g. androsterone or dihydrotestosterone. Indomethacin inhibited the reduction of dihydrotestosterone by this protein with an I50 (concn. causing 50% inhibition) value of 4.9 microM. From its physical and enzymic properties it is concluded that green-pigment converting protein is the same as 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50).  相似文献   

19.
With the exception of the oxidation of G6P (glucose 6-phosphate) by H6PDH (hexose-6-phosphate dehydrogenase), scant information is available about other endogenous substrates affecting the redox state or the regulation of key enzymes which govern the ratio of the pyridine nucleotide NADPH/NADP. In isolated rat liver microsomes, NADPH production was increased, as anticipated, by G6P; however, this was strikingly amplified by palmitoylcarnitine. Subsequent experiments revealed that the latter compound, well within its physiological concentration range, inhibited 11β-HSD1 (11β-hydroxysteroid dehydrogenase 1), the bidirectional enzyme which interconnects inactive 11-oxo steroids and their active 11-hydroxy derivatives. Notably, palmitoylcarnitine also stimulated the antithetical direction of 11β-HSD1 reductase, namely dehydrogenase. This stimulation of H6PDH may have likewise contributed to the NADPH accretion. All told, the result of these enzyme modifications is, in a conjoint fashion, a sharp amplification of microsomal NADPH production. Neither the purified 11β-HSD1 nor that obtained following microsomal sonification were sensitive to palmitoylcarnitine inhibition. This suggests that the long-chain amphipathic acylcarnitines, given their favourable partitioning into the membrane lipid bilayer, disrupt the proficient kinetic and physical interplay between 11β-HSD1 and H6PDH. Finally, although IDH (isocitrate dehydrogenase) and malic enzyme are present in microsomes and increase NADPH concentration akin to that of G6P, neither had an effect on 11β-HSD1 reductase, evidence that the NADPH pool in the endoplasmic reticulum shared by the H6PDH/11β-HSD1 alliance is uncoupled from that governed by IDH and malic enzyme.  相似文献   

20.
The location and some characteristics of rat adrenal C(19)-steroid 5alpha-reductase were investigated by using [7alpha-(3)H]androst-4-ene-3,17-dione and [7alpha-(3)H]testosterone as substrates. The enzymes system was shown to be NADPH-dependent and associated with the microsomal fraction. In addition, some evidence was also obtained for the existence of a separate NADH-dependent system in the soluble fraction. Further investigation of androst-4-ene-3,17-dione metabolism by subcellular fractions indicated the presence of NADH-dependent 3alpha- and 3beta-hydroxy steroid dehydrogenase systems in the microsomal pellet. This pellet also appeared to contain an NADH-dependent 17beta-hydroxy steroid dehydrogenase system, and a similar though separate system was detected in the cytosol. Malate (20mm) effectively inhibited the microsomal C(19)-steroid 5alpha-reductase, which showed similar values for K(m) and V(max.) when either androst-4-ene-3,17-dione or testosterone was used as substrate. Cytochrome c was added to all incubation mixtures used for the determination of these values to inhibit the formation of metabolites other than 5alpha-androstane-3,17-dione and 5alpha-dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) respectively. It was also found that corticosterone did not inhibit the 5alpha-reduction of androst-4-ene-3,17-dione under these conditions, indicating that separate enzymes exist for the 5alpha-reduction of C(19)- and C(21)-steroids in the rat adrenal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号