首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Ferric uptake repressor (Fur) proteins regulate the expression of iron homeostasis genes in response to intracellular iron levels. In general, Fur proteins bind with high affinity to a 19-bp inverted repeat sequence known as the Fur box. An alignment of 19 operator sites recognized by Bacillus subtilis Fur revealed a different conserved 15-bp (7-1-7) inverted repeat present twice within this 19-bp consensus sequence. We demonstrated using electrophoretic mobility shift assays that this 7-1-7 inverted repeat comprises a minimal recognition site for high-affinity binding by Fur. The resulting revised consensus sequence is remarkably similar to a related 7-1-7 inverted repeat sequence recognized by PerR, a Fur paralog. Our analysis of the affinity and stoichiometry of DNA binding by B. subtilis Fur, together with a reinterpretation of previously described studies of Escherichia coli Fur, supports a model in which the 19-bp Fur box represents overlapping recognition sites for two Fur dimers bound to opposite faces of the DNA helix. The resulting recognition complex is reminiscent of that observed for the functionally related protein DtxR. Like Fur, DtxR contains a helix-turn-helix DNA-binding motif, recognizes a 19-bp inverted repeat sequence, and has a typical DNase I footprint of approximately 30 bp. By envisioning a similar mode of DNA recognition for Fur, we can account for the internal symmetries noted previously within the Fur box, the tendency of Fur to extend into adjacent regions of DNA in a sequence-selective manner, and the observed patterns of DNA protection against enzymatic and chemical probes.  相似文献   

4.
5.
The efficiency of simian virus 40 (SV40) DNA replication is dependent on the structural organization of the regulatory region. The enhancing effect of the G + C-rich 21-base-pair (bp) repeats on SV40 DNA replication is position and dose dependent and to some extent orientation dependent. The inverted orientation is about 50% as effective as the normal orientation of the 21-bp repeat region. Movement of the 21-bp repeat region 180 or 370 bp upstream of the ori sequence abolishes its enhancing effect, whereas no replication is detected if the 21-bp repeat region is placed downstream of the ori sequence. The dose-dependent enhancement of the 21-bp repeat of SV40 DNA replication as first described in single transfection by Bergsma et al. (D. J. Bergsma, D. M. Olive, S. W. Hartzell, and K. N. Subramanian, Proc. Natl. Acad. Sci. USA 79:381-385, 1982) is dramatically amplified in mixed transfection. In the presence of the 21-bp repeat region, the 72-bp repeat region can enhance SV40 DNA replication. In the presence of the 21-bp repeats and a competitive environment, the 72-bp repeat region exhibits a cis-acting inhibitory effect on SV40 DNA replication.  相似文献   

6.
Bacteriocin production in Lactobacillus plantarum C11 is regulated by a three-component signal transduction system comprising a peptide pheromone (PlnA), a histidine protein kinase (PlnB), and two homologous response regulators (RRs; PlnC and PlnD). Both RRs are DNA-binding proteins that bind to promoter-proximal elements in the pln regulon. The binding site for the two regulators consists of two 9-bp direct repeats, that conform to the consensus sequence 5'-TACGTTAAT-3', and the repeats are separated by an intervening 12-bp AT-rich spacer region. In the present work, the plhA promoter was used as a model to evaluate the significance of the binding sequence and conserved promoter arrangement. Point substitutions in the consensus sequence, particularly those in invariant positions, either abolished or significantly reduced binding of PlnC and PlnD. Both regulators bind as homodimers to DNA fragments containing a complete set of regulatory elements, while removal of either repeat, or alterations in the length of the spacer region, significantly weakened binding of both protein dimers. DNase I footprinting demonstrated that PlnC and PlnD both bind to, and protect, the direct repeats. By fusing the plnA promoter region to the beta-glucuronidase (GUS) gene, it was shown that promoter activity is dependent on an intact set of accurately organized repeats. The in vitro and in vivo results presented here confirm the involvement of the repeats as regulatory elements in the regulation of bacteriocin production.  相似文献   

7.
8.
The AMP-activated protein kinase (AMPK) system monitors cellular energy status by sensing AMP and ATP, and is a key regulator of energy balance at the cellular and whole-body levels. AMPK exists as heterotrimeric alphabetagamma complexes, and the gamma subunits contain two tandem domains that bind the regulatory nucleotides. There is a sequence in the first of these domains that is conserved in gamma subunit homologues in all eukaryotes, and which resembles the sequence around sites phosphorylated on target proteins of AMPK, except that it has a non-phosphorylatable residue in place of serine. We propose that in the absence of AMP this pseudosubstrate sequence binds to the active site groove on the alpha subunit, preventing phosphorylation by the upstream kinase, LKB1, and access to downstream targets. Binding of AMP causes a conformational change that prevents this interaction and relieves the inhibition. We present several lines of evidence supporting this hypothesis.  相似文献   

9.
10.
11.
12.
13.
We have initiated a study to identify host proteins which interact with the regulatory region of the human polyomavirus JC (JCV), which is associated with the demyelinating disease, progressive multifocal leukoencephalopathy. We examined the interaction of nuclear proteins prepared from different cell lines with the JCV regulatory region by DNA binding gel retardation assays. Binding was detected with nuclear extracts prepared from human fetal glial cells, glioma cells, and HeLa cells. Little or no binding was detected with nuclear extracts prepared from human embryonic kidney cells. Competitive binding assays suggest that the nuclear factor(s) which interacted with the JCV regulatory region was different from those which interacted with the regulatory region of the closely related polyomavirus SV40. We found three areas in the JCV regulatory region protected from DNase I digestion: site A, located just upstream from the TATA sequence in the first 98-base pair (bp) repeat; site B, located upstream from the TATA sequence in the second 98-bp repeat; and site C, located just following the second 98-bp repeat. There were some differences in the ability of the nuclear factor(s) from the two brain cell lines and HeLa cells to completely protect the nucleotides within the footprint region. The results from the DNase I protective studies and competitive DNA binding studies with specific oligonucleotides, suggest that nuclear factor-1 or a nuclear factor-1-like factor is interacting with all three sites in the JCV regulatory region. In addition, the results suggest that the nuclear factor which interacts with the JCV regulatory region from human brain cell lines is different from the factor found in HeLa cells.  相似文献   

14.
Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infection of humans and animals. The virulence of this pathogen is thought to depend on a number of secreted proteins, including the MprA metalloprotease. We observed that MprA is produced upon entry into the stationary phase, when the cell density is high, and this prompted us to study cell density-dependent regulation in B. pseudomallei. A search of the B. pseudomallei genome led to identification of a quorum-sensing system involving the LuxI-LuxR homologs PmlI-PmlR. PmlI directed the synthesis of an N-acylhomoserine lactone identified as N-decanoylhomoserine lactone. A B. pseudomallei pmlI mutant was significantly less virulent than the parental strain in a murine model of infection by the intraperitoneal, subcutaneous, and intranasal routes. Inactivation of pmlI resulted in overproduction of MprA at the onset of the stationary phase. A wild-type phenotype was restored following complementation with pmlI or addition of cell-free culture supernatant. In contrast, there was no significant difference between the virulence of a B. pseudomallei mprA mutant and the virulence of the wild-type strain. These results suggest that the PmlI-PmlR quorum-sensing system of B. pseudomallei is essential for full virulence in a mouse model and downregulates the production of MprA at a high cell density.  相似文献   

15.
We have previously shown that the Pseudomonas aeruginosa toxA regulatory protein PtxS autoregulates its own synthesis by binding to a 52-bp fragment. The 3' end of the 52-bp fragment is located 58 bp 5' of the ptxS translation start site. We have identified a 14-bp palindromic sequence (TGAAACCGGTTTCA) within the 52-bp fragment. In this study, we used site-directed mutagenesis and promoter fusion experiments to determine if PtxS binds specifically to this palindromic sequence and regulates ptxS expression. We have also tried to determine the roles of specific nucleotides within the palindromic sequence in PtxS binding and ptxS expression. Initial promoter fusion experiments confirmed that the 52-bp fragment does not overlap with the region that carries the ptxS promoter activity. PtxS binding was eliminated upon the deletion of the 14-bp palindromic sequence from the 52-bp fragment. In addition, the deletion of the 14-bp sequence caused a significant enhancement in ptxS expression in the P. aeruginosa strain PAO1 and the ptxS isogenic mutant PAO::ptxS. Mutation of specific nucleotides within the 14-bp sequence eliminated, reduced, or had no effect on PtxS binding. However, mutations of several of these nucleotides produced a significant increase in ptxS expression in both PAO1 and PAO::ptxS. These results suggest that (i) the 14-bp palindromic sequence and specific nucleotides within it play a role in PtxS binding and (ii) deletion of the palindromic sequence or changing of certain nucleotides within it interferes with another mechanism that may regulate ptxS expression.  相似文献   

16.
The regulatory mechanisms of most cyclin dependent protein kinases (CDKs) are well understood and are highly conserved in eukaryotes. CDKs from the malaria parasite, Plasmodium falciparum, appear to be regulated in a similar manner with regard to cyclin binding and phosphorylation. In order to further understand their regulatory mechanisms, we examined two classes of cyclin dependent kinase inhibitors (CDIs) to inhibit a panel of plasmodial CDKs. We find that Pfmrk and PfPK5 are inhibited by heterologous p21(CIP1) with varying degrees of inhibition. In contrast, PfPK6, a kinase with sequence features characteristic of both a CDK and MAP kinase, is unaffected by this CDI. Furthermore, the CDK4/6 specific CDI, p16(INK4), fails to inhibit these plasmodial CDKs. Taken together, these results suggest that plasmodial CDKs may be regulated by the binding of inhibitory proteins in vivo.  相似文献   

17.
18.
T-antigen-induced DNA distortion was studied in a series of simian virus 40 (SV40) plasmid constructs whose relative replication efficiency ranges from 0.2 to 36. Bending was detected in the wild-type SV40 regulatory region consisting of three copies of the GC-rich 21-bp repeat but not in constructs with only one or two copies of the 21-bp repeat. In a construct with enhanced replication efficiency, bending occurred in a 69-bp cellular sequence located upstream of a single copy of the 21-bp repeat. Bending occurred both upstream of ori and in the three 21-bp repeats located downstream of ori in a construct with reduced replication efficiency. In a construct with no 21-bp repeats, DNA distortion occurred downstream of ori. The results indicate that SV40 DNA replication is enhanced when the structure of the regulatory region allows the DNA to form a bent structure upstream of the initial movement of the replication fork.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号