首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work had suggested that in addition to serving the function of a siderophore, pyridine-2,6-bis(thiocarboxylic acid) (PDTC) may also provide producing organisms with the ability to assimilate other divalent transition metals. This was tested further by examining regulation of siderophore production, expression of pdt genes, and growth in response to added zinc. In media containing 10–50 μM ZnCl2, the production of PDTC was found to be differentially repressed, as compared with the production of pyoverdine. The expression of PdtK, the outer membrane receptor involved in PDTC transport, was also reduced in response to added zinc whereas other iron-regulated outer membrane proteins were not. Expression of a chromosomal pdtI:: xylE fusion was repressed to a similar extent in response to zinc or iron. Mutants that cannot produce PDTC did not show a growth enhancement with micromolar concentrations of zinc as seen in the wild type strain. The phenotype of the mutant strains was suppressed by the addition of PDTC. The outer membrane receptor and inner membrane permease components of PDTC utilization were necessary for relief of chelator (1,10-phenanthroline)-induced growth inhibition by Zn:PDTC. Iron uptake from 55Fe:PDTC was not affected by a 32-fold molar excess of Zn:PDTC. The data indicate that zinc present as Zn:PDTC can be utilized by strains possessing PDTC utilization functions but that transport is much less efficient than for Fe:PDTC.  相似文献   

2.
Pyridine-2,6-bis(monothiocarboxylic acid), also known as pyridine-2,6-dithiocarboxylic acid (pdtc), is a unique and powerful metal chelator produced by Pseudomonas stutzeri and Pseudomonas putida. The actual physiological roles of pdtc in these pseudomonads are not known with certainty, though it is likely that the compound acts as a siderophore, an antibiotic, or both. The stability constant of FeIII(pdtc)2 2- was determined in previous work to be 1033.36. Here we determined that the stability constant of FeII(pdtc)2 2- is 1012. We determined this stability constant through potentiometric and spectrophotometric measurements of a ligand-ligand competition study using 2,6-pyridine dicarboxylic acid as the competitor for iron. Comparing the stability constant for FeII(pdtc)2 2- to the constant for FeIII(pdtc)2 2- shows that the stability constant of FeII(pdtc)2 2- is approximately 21 orders of magnitude smaller. This represents a very significant decrease in the binding strength of pdtc toward iron. Thus, if the host cell produces pdtc as a siderophore for sequestering Fe(III), it is likely that a second metabolite or a membrane protein of the host cell is used for reduction of the chelated iron at or near the cell membrane in order to facilitate its release from pdtc for cellular use.  相似文献   

3.
4.
Pyridine-2,6-dithiocarboxylic acid (pdtc) is a metal chelator produced by Pseudomonas spp. It has been shown to be involved in the biodegradation of carbon tetrachloride; however, little is known about its biological function. In this study, we examined the antimicrobial properties of pdtc and the mechanism of its antibiotic activity. The growth of Pseudomonas stutzeri strain KC, a pdtc-producing strain, was significantly enhanced by 32 microM pdtc. All nonpseudomonads and two strains of P. stutzeri were sensitive to 16 to 32 microM pdtc. In general, fluorescent pseudomonads were resistant to all concentrations tested. In competition experiments, strain KC demonstrated antagonism toward Escherichia coli. This effect was partially alleviated by 100 microM FeCl3. Less antagonism was observed in mutant derivatives of strain KC (CTN1 and KC657) which lack the ability to produce pdtc. A competitive advantage was restored to strain CTN1 by cosmid pT31, which restores pdtc production. pT31 also enhanced the pdtc resistance of all pdtc-sensitive strains, indicating that this plasmid contains elements responsible for resistance to pdtc. The antimicrobial effect of pdtc was reduced by the addition of Fe(III), Co(III), and Cu(II) and enhanced by Zn(II). Analyses by mass spectrometry determined that Cu(I):pdtc and Co(III):pdtc2 form immediately under our experimental conditions. Our results suggest that pdtc is an antagonist and that metal sequestration is the primary mechanism of its antimicrobial activity. It is also possible that Zn(II), if present, may play a role in pdtc toxicity.  相似文献   

5.
Cell density-dependent gene expression in Pseudomonas aeruginosa is controlled, in part, by the quorum-sensing regulator LasR. lasR null mutants exhibited a reproducible 2-fold decrease in production of the catecholate-hydroxamate siderophore pyoverdine during grown under iron-limiting conditions. Similarly, lasI mutants defective in the biosynthesis of the autoinducer PAI-1 also exhibited a 2-fold decrease in pyoverdine production which could be largely restored upon addition of exogenous PAI-1. lasR mutants were not altered with respect to expression of the pvdD gene involved in the synthesis of the peptide portion of pyoverdine, indicating that some other pyoverdine biosynthetic gene(s) were affected by the LasRI status of the cell. This represents the first report of quorum-sensing regulation of siderophore production in bacteria and highlights the fact that cell density, while not an essential signal for pyoverdine expression, does enhance production of this siderophore.  相似文献   

6.
Novel putative pyoverdine synthetase pvdIJK genes were found upstream of pvdD in the 6.2-Mb chromosome of Pseudomonas aerugilosa strain PAO1. These genes formed a locus implicated in pyoverdine biosynthesis. Sequence analysis showed that the product of these genes shared 43%, 60% and 57% identity with PvdD. PvdIJK are thought to be implicated in synthesis of pyoverdine, a siderophore chelating Fe3+. A pvdI mutant was obtained by gene disruption mutagenesis and confirmed by Southern hybridization. The pvdl mutant produced gave no significant growth on solid media supplemented with the iron chelator 2,2-dipyridyl; while the PvdI- phenotype abolished pyoverdine fluorescence. The role of PvdI in pathogenicity was tested by measuring the in vivo growth of P. aeruginosa wild-type and mutant strains in a chronic lung infection rat model, and by measuring the competitive infectivity index into a neutropenic mice model. The data obtained confirmed the importance of PvdI in virulence and iron uptake.  相似文献   

7.
Pyridine-2,6-dithiocarboxylic acid (pdtc) is a metal chelator produced by Pseudomonas spp. It has been shown to be involved in the biodegradation of carbon tetrachloride; however, little is known about its biological function. In this study, we examined the antimicrobial properties of pdtc and the mechanism of its antibiotic activity. The growth of Pseudomonas stutzeri strain KC, a pdtc-producing strain, was significantly enhanced by 32 μM pdtc. All nonpseudomonads and two strains of P. stutzeri were sensitive to 16 to 32 μM pdtc. In general, fluorescent pseudomonads were resistant to all concentrations tested. In competition experiments, strain KC demonstrated antagonism toward Escherichia coli. This effect was partially alleviated by 100 μM FeCl3. Less antagonism was observed in mutant derivatives of strain KC (CTN1 and KC657) which lack the ability to produce pdtc. A competitive advantage was restored to strain CTN1 by cosmid pT31, which restores pdtc production. pT31 also enhanced the pdtc resistance of all pdtc-sensitive strains, indicating that this plasmid contains elements responsible for resistance to pdtc. The antimicrobial effect of pdtc was reduced by the addition of Fe(III), Co(III), and Cu(II) and enhanced by Zn(II). Analyses by mass spectrometry determined that Cu(I):pdtc and Co(III):pdtc2 form immediately under our experimental conditions. Our results suggest that pdtc is an antagonist and that metal sequestration is the primary mechanism of its antimicrobial activity. It is also possible that Zn(II), if present, may play a role in pdtc toxicity.  相似文献   

8.
Pseudomonas aeruginosa is a primary bacterial model to study cooperative behaviors because it yields exoproducts such as siderophores and exoproteases that act as public goods and can be exploited by selfish nonproducers behaving as social cheaters. Iron-limited growth medium, mainly casamino acids medium supplemented with transferrin, is typically used to isolate and study nonproducer mutants of the siderophore pyoverdine. However, using a protein as the iron chelator could inadvertently select mutants unable to produce exoproteases, since these enzymes can degrade the transferrin to facilitate iron release. Here we investigated the evolutionary dynamics of pyoverdine and exoprotease production in media in which iron was limited by using either transferrin or a cation chelating resin. We show that concomitant loss of pyoverdine and exoprotease production readily develops in media containing transferrin, whereas only pyoverdine loss emerges in medium treated with the resin. Characterization of exoprotease- and pyoverdine-less mutants revealed loss in motility, different mutations, and large genome deletions (13–33 kb) including Quorum Sensing (lasR, rsal, and lasI) and flagellar genes. Our work shows that using transferrin as an iron chelator imposes simultaneous selective pressure for the loss of pyoverdine and exoprotease production. The unintended effect of transferrin uncovered by our experiments can help to inform the design of similar studies.Subject terms: Bacteriology, Microbial ecology  相似文献   

9.
A putative operon of four genes implicated in the synthesis of the chromophore moiety of the Pseudomonas aeruginosa siderophore pyoverdine, dubbed pvcABCD (where pvc stands for pyoverdine chromophore), was cloned and sequenced. Mutational inactivation of the pvc genes abrogated pyoverdine biosynthesis, consistent with their involvement in the biosynthesis of this siderophore. pvcABCD expression was negatively regulated by iron and positively regulated by both PvdS, the alternate sigma factor required for pyoverdine biosynthesis, and PtxR, a LysR family activator previously implicated in exotoxin A regulation.  相似文献   

10.
Siderophores, which are produced to overcome iron deficiency, are believed to be closely related to the adaptability of bacteria. The high-siderophore-yielding Pseudomonas sp. strain HYS simultaneously secretes the fluorescent siderophore pyoverdine and another nonfluorescent siderophore that is a major contributor to the high siderophore yield. Transposon mutagenesis revealed siderophore-related genes, including the two-component regulators GacS/GacA and a special cluster containing four open reading frames (the nfs cluster). Deletion mutations of these genes abolished nonfluorescent-siderophore production, and expression of the nfs cluster depended on gacA, indicating that gacS-gacA may control the nonfluorescent siderophore through regulation of the nfs cluster. Furthermore, regulation of the nonfluorescent siderophore by GacS/GacA involved the Gac/Rsm pathway. In contrast, inactivation of GacS/GacA led to upregulation of the fluorescent pyoverdine. The two siderophores were secreted under different iron conditions, probably because of differential effects of GacS/GacA. The global GacS/GacA regulatory system may control iron uptake by modulating siderophore production and may enable bacteria to adapt to changing iron environments.  相似文献   

11.
We have identified two types of siderophores produced by Pseudomonas, one of which has never before been found in the genus. Twelve strains of Pseudomonas stutzeri belonging to genomovars 1, 2, 3, 4, 5, and 9 produced proferrioxamines, the hydroxamate-type siderophores. Pseudomonas stutzeri JM 300 (genomovar 7) and DSM 50238 (genomovar 8) and Pseudomonas balearica DSM 6082 produced amonabactins, catecholate-type siderophores. The major proferrioxamines detected were the cyclic proferrioxamines E and D2. Pseudomonas stutzeri KC also produced cyclic (X1 and X2) and linear (G1 and G2a-c) proferrioxamines. Our data indicate that the catecholate-type siderophores belong to amonabactins P 750, P 693, T 789, and T 732. A mutant of P. stutzeri KC (strain CTN1) that no longer produced the secondary siderophore pyridine-2,6-dithiocarboxylic acid continued to produce all other siderophores in its normal spectrum. Siderophore profiles suggest that strain KC (genomovar 9) belongs to the proferrioxamine-producing P. stuzeri. Moreover, a putative ferrioxamine outer membrane receptor gene foxA was identified in strain KC, and colony hybridization showed the presence of homologous receptor genes in all P. stutzeri and P. balearica strains tested.  相似文献   

12.
We show that treatment with non-toxic doses of zinc in association to the ionophore compound pyrrolidine dithiocarbamate (PDTC) inhibits p53(-/-) pancreatic cancer cell growth much more efficiently than gemcitabine, the gold standard chemotherapeutic agent for pancreatic cancer. Both the metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine and the radical scavenger N-acetyl-l-cysteine are able to recover cell growth inhibition by Zn/PDTC, demonstrating that this effect depends on the increased levels of intracellular zinc and of reactive oxygen species (ROS). Zn/PDTC treatment induces a strong apoptotic cell death that is associated to ROS-dependent nuclear translocation of the mitochondrial factor AIF, but not to the regulation of apoptotic genes and caspase activation. Primary fibroblasts are more resistant than pancreatic cancer cells to Zn/PDTC treatment and exhibit a lower basal and Zn/PDTC-induced enhancement of intracellular zinc. We show that Zn/PDTC induces p53 proteasomal degradation and that the proteasome inhibitor MG132 further increases fibroblast growth inhibition by Zn/PDTC, suggesting that p53 degradation plays an important role in fibroblast resistance to Zn/PDTC.  相似文献   

13.
14.
Pyridine-2,6-bis(monothiocarboxylic acid) (pdtc),a natural metal chelator produced by Pseudomonas stutzeri and Pseudomonas putidathat promotes the degradation of carbon tetrachloride, was synthesized and studiedby potentiometric and spectrophotometric techniques. The first two stepwise protonationconstants (pK) for successive proton addition to pdtc were found to be 5.48 and2.58. The third stepwise protonation constant was estimated to be 1.3. The stability (affinity)constants for iron(III), nickel(II), and cobalt(III) were determined by potentiometric orspectrophotometric titration. The results show that pdtc has strong affinity for Fe(III)and comparable affinities for various other metals. The stability constants (log K) are 33.93 for Co(pdtc)2 1-; 33.36 for Fe(pdtc)2 1-; and 33.28 for Ni(pdtc)2 2-. These protonationconstants and high affinity constants show that over a physiological pH range theferric pdtc complex has one of the highest effective stability constants for ironbinding among known bacterial chelators.  相似文献   

15.
Pyrrolidine dithiocarbamate (PDTC) is a metal chelating compound that can exert either pro-oxidant or antioxidant effects in different situations. Several studies demonstrate that it can inhibit cyclooxygenase-2 (COX-2) expression, which may be due to its antioxidant activity. Here, we found that PDTC rather increased COX-2 expression in NIH 3T3. The increase of COX-2 expression was inhibited by adding bathocuproline disulfonic acid, a non-permeable specific copper chelator, in the incubation medium. This result suggests that PDTC exerts its effect by transporting redox-active copper ions into the cells. In support of this observation, PDTC did not induce COX-2 expression in a serum-free environment. When PDTC was added with copper in the serum-free medium, it acted as the inducer of COX-2 expression. In addition, pretreatment of N-acetyl-L-cystein or dithiothreitol, other antioxidants, inhibited the PDTC-induced COX-2 expression. Our data indicate that PDTC induces COX-2 expression in NIH 3T3 cells, which may be due to its activities as a copper chelator and a pro-oxidant.  相似文献   

16.
Pyrrolidine dithiocarbamate (PDTC) is a metal-chelating compound that acts as antioxidant or pro-oxidant and is widely used to study redox regulation of cell function. In the present study, we investigated effects of PDTC and another antioxidant, N-acetyl-l-cysteine (NAC), on TNF-alpha-dependent activation of NF-kappaB in human aortic smooth muscle cells (HASMC). Treatment of the cells with TNF-alpha induced the activation of p65/p50 heterodimer NF-kappaB and increased the mRNA levels of monocyte chemoattractant protein (MCP)-1. Pretreatment with PDTC markedly suppressed the NF-kappaB activation and expression of MCP-1 by inhibiting IkappaB-alpha degradation. In contrast, NAC had no effect. PDTC concomitantly increased the intracellular levels of copper, and bathocuproinedisulfonic acid, a non-cell-permeable chelator of Cu(1+), inhibited the PDTC-induced increase in intracellular copper level and reversed the PDTC effects on IkappaB-alpha, NF-kappaB, and MCP-1. These results indicate that TNF-alpha-dependent expression of MCP-1 in HASMC is tightly regulated by NF-kappaB and that intracellular copper level is crucial for the TNF-alpha-dependent activation of NF-kappaB in HASMC.  相似文献   

17.
Twelve fluorescent Pseudomonas isolates colonizing roots of four crop plants, chilli, cotton, groundnut and soybean, were examined for extracellular siderophore production in different media under iron deficient conditions. While all the organisms produced siderophores, they varied in the quantity of siderophores produced and in their preference to the medium. The siderophores were invariably hydroxamates (pyoverdine) of trihydroxamate type which formed bidentate ligands with Fe III ions.  相似文献   

18.
Pseudomonads are serious candidates for siderophore production applied to toxic metal (TM) solubilization. The bioaugmentation of contaminated soils by these TM-solubilizing bacteria combined with phytoextraction is an emerging clean-up technology. Unfortunately, siderophore synthesis may be drastically reduced by soluble iron in soils and bacteria can suffer from TM toxicity. In this study, we compared siderophore production by Pseudomonas aeruginosa and Pseudomonas fluorescens by using free and immobilized cells in Ca-alginate beads incubated in a medium containing Fe and/or TM (mixture of Cr, Hg, and Pb in concentrations which represented the soluble fraction of a contaminated agricultural soil). Free cell growth was stimulated by Fe, whatever the microorganism, the inoculum size and the presence or not of TM might have been. P. aeruginosa was less sensitive to TM than P. fluorescens. By comparison with free cells, immobilization with the high inoculum size showed less sensitivity to TM most probably because of lower metal diffusion in beads. Indeed, a maximum of 99.1% of Cr, 57.4% of Hg, and 99.6% of Pb were adsorbed onto beads. The addition of iron in the culture medium reduced significantly siderophore production of free cells while it led only to a low decrease with their immobilized counterparts, in particular with P. aeruginosa. In culture medium enriched with Fe and/or TM, siderophore-specific production of immobilized cells was higher than for free cells.  相似文献   

19.
Transposon mutant strain 3G6 of Pseudomonas fluorescens ATCC 17400 which was deficient in pyoverdine production, was found to produce another iron-chelating molecule; this molecule was identified as 8-hydroxy-4-methoxy-quinaldic acid (designated quinolobactin). The pyoverdine-deficient mutant produced a supplementary 75-kDa iron-repressed outer membrane protein (IROMP) in addition to the 85-kDa IROMP present in the wild type. The mutant was also characterized by substantially increased uptake of (59)Fe-quinolobactin. The 75-kDa IROMP was produced by the wild type after induction by quinolobactin-containing culture supernatants obtained from the pyoverdine-negative mutant or by purified quinolobactin. Conversely, adding purified wild-type pyoverdine to the growth medium resulted in suppression of the 75-kDa IROMP in the pyoverdine-deficient mutant; however, suppression was not observed when Pseudomonas aeruginosa PAO1 pyoverdine, a siderophore utilized by strain 3G6, was added to the culture. Therefore, we assume that the quinolobactin receptor is the 75-kDa IROMP and that the quinolobactin-mediated iron uptake system is repressed by the cognate pyoverdine.  相似文献   

20.
A mutant of Pseudomonas fluorescens strain B52 deficient in the synthesis of the fluorescent pigment, pyoverdine, was isolated. Absence of pyoverdine and other siderophores was confirmed by gel filtration, a specific siderophore assay, and inhibition studies with the iron chelator EDDA. Both parent and mutant synthesized additional outer membrane proteins in response to iron-limitation. Mutant cells cultured in the absence of iron(III) accumulated 55Fe-labeled pyoverdine. The mutant produced extracellular proteinase normally on various media, but was deficient in lipase secretion. Growth of the mutant with partially-purified pyoverdine resulted in a 2.5-fold stimulation of lipase secretion. The mutant grew poorly in deferrated medium; however, the addition of iron(III) stimulated growth. Proteinase secretion in deferrated medium was stimulated over a narrow range of iron(III) concentration, while lipase secretion was only slightly affected. The data suggest that separate regulatory mechanisms exist for the control of proteinase and lipase secretion by iron(III).Contribution No. 768 from the Food Research Centre  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号