首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Solvent screening for in situ liquid extraction of products from acetone-butanol-ethanol (ABE) fermentation was carried out, taking into account biological parameters (biocompatibility, bioavailability, and product yield) and extraction performance (partition coefficient and selectivity) determined in real fermentation broth. On the basis of different solvent characteristics obtained from literature, 16 compounds from different chemical families were selected and experimentally evaluated for their extraction capabilities in a real ABE fermentation broth system. From these compounds, nine potential solvents were also tested for their biocompatibility towards Clostridium acetobutylicum. Moreover, bioavailability and differences in substrate consumption and total n-butanol production with respect to solvent-free fermentations were quantified for each biocompatible solvent. Product yield was enhanced in the presence of organic solvents having higher affinity for butanol and butyric acid. Applying this methodology, it was found that the Guerbet alcohol 2-butyl-1-octanol presented the best extracting characteristics (the highest partition coefficient (6.76) and the third highest selectivity (644)), the highest butanol yield (27.4 %), and maintained biocompatibility with C. acetobutylicum.  相似文献   

2.
Solvent production by Clostridium acetobutylicum collapses when cells are grown in pH-uncontrolled glucose medium, the so-called "acid crash" phenomenon. It is generally accepted that the fast accumulation of acetic acid and butyric acid triggers the acid crash. We found that addition of 1 mM formic acid into corn mash medium could trigger acid crash, suggesting that formic acid might be related to acid crash. When it was grown in pH-uncontrolled glucose medium or glucose-rich medium, C. acetobutylicum DSM 1731 containing the empty plasmid pIMP1 failed to produce solvents and was found to accumulate 0.5 to 1.24 mM formic acid intracellularly. In contrast, recombinant strain DSM 1731 with formate dehydrogenase activity did not accumulate formic acid intracellularly and could produce solvent as usual. We therefore conclude that the accumulation of formic acid, rather than acetic acid and butyric acid, is responsible for the acid crash of acetone-butanol-ethanol fermentation.  相似文献   

3.
Fermentation characteristics of Clostridium acetobutylicum B18 were studied in batch experiments with and without pH control. This strain is shown to be potentially useful in simultaneous acetone-butanol-ethanol fermentation-separation systems because of its low acid production. In a pH-uncontrolled batch culture this strain produced mostly solvents, including 15 g/l of butanol. Ethanol production was low. Strain B18 recycled organic acids more efficiently than other strains. In particular, butyric acid was completely recycled when glucose was not limiting. Yield of liquid products (solvents plus organic acids) and carbon recovery in total products (gas plus liquid) were 33.1–36.4 wt% and 90–91 mol%, respectively, for 20–80 g/l of initial glucose. Glucose consumption and the percentage of butanol among solvents were higher at 32°C than at 37°C. Strain B18 required approximately 0.4 g/l of undissociated butyric acid at the onset of solvent production in pH-uncontrolled batch culture. The low undissociated butyric acid requirement enabled this strain to produce 13.8 g/l of butanol at a controlled pH of 6.0.Contribution no. 19998 of the Minnesota Agricultural Experiment Station Correspondence to: C.-H. Park  相似文献   

4.
Acetone-butanol fermentation and its variants   总被引:1,自引:0,他引:1  
Recent intensive research on the acetone-butanol-ethanol and the isopropanol-butanol-ethanol fermentation has increased the basic understanding of these processes substantially. Metabolic investigations on Clostridium acetobutylicum, and Clostridium beijerinkii show that enzyme activities necessary for solvent production are induced only in solvent-producing cells. Although produced, or added, acetic and butyric acid have significant effects on the metabolic activities, the transition from acid to solvent production cannot as yet be fully explained. Based on studies in continuous cultures, the kinetics of product formation can be described. Knowledge of the mechanism of butanol toxicity is accumulating but no dramatic increase in butanol tolerance has so far been obtained. Successful results, approaching the limitations determined by biological and technological possibilities, have been obtained in batch and continuous cultures, and in continuous processes based on immobilized cells. Continuous processes are superior to batch cultures in respect of their productivity.  相似文献   

5.
Sangavai  C.  Chellapandi  P. 《Amino acids》2019,51(9):1397-1407

Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia-producing anaerobe. It has the ability to produce organic solvents and acids from protein catabolism through Stickland reactions and specialized pathways. Nevertheless, its protein catabolism-directed biofuel production has not yet been understood. The present study aimed to decipher such growth-associated metabolic potential of this organism at different growth phases using metabolic profiling. A seed culture of this organism was grown separately in metabolic assay media supplemented with gelatin and or a mixture of amino acids. The extracellular metabolites produced by this organism were qualitatively analyzed by gas chromatography–mass spectrometry platform. The residual amino acids after protein degradation and amino acids assimilation were identified and quantitatively measured by high-performance liquid chromatography (HPLC). Organic solvents and acids produced by this organism were detected and the quantity of them determined with HPLC. Metabolic profiling data confirmed the presence of amino acid catabolic products including tyramine, cadaverine, methylamine, and putrescine in fermented broth. It also found products including short-chain fatty acids and organic solvents of the Stickland reactions. It reported that amino acids were more appropriate for its growth yield compared to gelatin. Results of quantitative analysis of amino acids indicated that many amino acids either from gelatin or amino acid mixture were catabolised at a log-growth phase. Glycine and proline were poorly consumed in all growth phases. This study revealed that apart from Stickland reactions, a specialized system was established in A. sticklandii for protein catabolism-directed biofuel production. Acetone–butanol–ethanol (ABE), acetic acid, and butyric acid were the most important biofuel components produced by this organism. The production of these components was achieved much more on gelatin than amino acids. Thus, A. sticklandii is suggested herein as a potential organism to produce butyric acid along with ABE from protein-based wastes (gelatin) in bio-energy sectors.

  相似文献   

6.
Micronutrient zinc is of great importance for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum. The effect of zinc supplementation on toxic metabolites (formic, acetic, butyric acid and butanol) tolerance during ABE fermentation was investigated under various stress-shock conditions without pH control. Great improvements on cell growth, glucose utilization and butanol production were achieved. In the presence of 0.45 g/L formic acid, zinc contributed to 11.28 g/L butanol produced from 55.24 g/L glucose compared to only 5.27 g/L butanol from 29.49 g/L glucose in the control without zinc supplementation. More importantly, relatively higher levels of 7.5 g/L acetic acid, 5.5 g/L butyric acid and 18 g/L butanol could be tolerated by C. acetobutylicum with zinc supplementation while no fermentation was observed under the same stress-shock condition respectively, suggesting that the acids and butanol tolerance in C. acetobutylicum could be significantly facilitated by pleiotropic regulation of micronutrient zinc. Thus, this paper provides an efficient bioprocess engineering strategy for improving stress tolerance in Clostridium species.  相似文献   

7.
The kinetics in fed-batch cultures of acetone butanol fermentation by Clostridium acetobutylicum is compared on glucose, xylose, and mixtures of both sugars. The final conversion yield of sugars into solvents always increases with the sugar feeding rate. At low feeding rates, the sugar concentration in the medium becomes limiting, which results in a slower cellular growth, a slower metabolic transition from an acid to a solvent fermentation and, thus, a higher accumulation of acids. It is only at sufficiently high feeding rates that fed-batch fermentations yield kinetic results comparable to those of batch fermentations. With mixtures of glucose and xylose, because of a maintained low glucose level, both sugars are taken up at the same rate during a first fermentation period. An earlier accumulation of xylose when the fermentation becomes inhibited suggest that xylose utilization is inhibited when the catabolic flux of glucose alone can satisfy the metabolic activity of the cell. Kinetic results with batch and fed-batch fermentations indicate several important features of the regulation of C. acetobutylicum metabolism: an early inhibition by the produced acids; an initiation of solvent formation between 4 and 6 g/L acetic and butyric acid depending on the metabolic activity of the cell; a metabolic transition from acids to solvents production at a rate closely related to the rate of sugar uptake; during solvent production, a reassimilation of acids above a minimal rate of sugar consumption of 0.2 h(-1); a final inhibition of the fermentation at a total butanol and acids concentration of ca. 20 g/L.  相似文献   

8.
研究了酒色着色菌(Chromatiumvinosum DSM185)利用产酸克雷伯氏菌(Klebsiellaoxytoca HP1)发酵产氢废液进行光发酵和暗发酵产氢的可行性,以达到对产氢底物的充分利用和对产氢废液的进一步处理。研究结果表明C.vinosum可以利用K.oxytoca的发酵废液进行光发酵产氢和暗发酵产氢。C.vinosum发酵产氢后废液中残余还原糖和主要有机酸(丁酸)的含量明显降低,发酵产氢的最佳pH为6.5,添加0.1%(W/W)NH4Cl能促进产氢。在光照条件下丁酸利用率可达54.38%,产氢量达36.97mL/mg;在黑暗条件下丁酸利用率可达36.01%,产氢量达37.50mL/mg。  相似文献   

9.
不同发酵条件下产甘油假丝酵母有机酸代谢的研究   总被引:3,自引:0,他引:3  
产甘油假丝酵母 (Candidaglycerolgenesis)发酵产生的有机酸对丙三醇产品质量和产率均有影响。发现在发酵其它条件恒定 ,装液比和玉米浆浓度增加时 ,发酵液总酸是递增的。在装液比为 0 2和玉米浆浓度为 8g L时 ,丙酮酸和乳酸在细胞生长期可分别积累达 4 1g L和 1 0g L ,比正常发酵时增加 2倍以上 ,丙三醇产率也低 ;然而 ,装液比为 0 0 8和玉米浆浓度为 4g L时 ,丙酮酸和乳酸产生较低 ,丙三醇产率较高 ,但乙酸积累比供氧不足时高 ,可达 2 6g L。发酵过程中有机酸被细胞代谢 ,含量逐渐下降 ,如在初糖浓度为 1 0 0g L时 ,有机酸在细胞生长期积累至高峰后 ,丙三醇和有机酸随之均降低至较低含量 ,并且丙酮酸或乳酸可以转化为乙酸。此外 ,在外加一些添加剂时对其产生有机酸也有影响 ,如添加 1 %油酸和VB1时可以降低乙酸的积累 ,同时增加丙酮酸的含量 ,丙三醇产量也有所增加 ;而丙酮酸结构类似物氟代丙酮酸和亚硫酸盐促进乙酸的产生 ,使酮戊二酸合成减少 ,丙三醇产量约增加 2 0 %。  相似文献   

10.
Bacterial fermentation of lignocellulose has been regarded as a sustainable approach to butyric acid production. However, the yield of butyric acid is hindered by the conversion efficiency of hydrolysate xylose. A mesophilic alkaline-tolerant strain designated as Clostridium butyricum B10 was isolated by xylose fermentation with acetic and butyric acids as the principal liquid products. To enhance butyric acid production, performance of the strain in batch fermentation was evaluated with various temperatures (20–47 °C), initial pH (5.0–10.0), and xylose concentration (6–20 g/L). The results showed that the optimal temperature, initial pH, and xylose concentration for butyric acid production were 37 °C, 9.0, and 8.00 g/L, respectively. Under the optimal condition, the yield and specific yield of butyric acid reached about 2.58 g/L and 0.36 g/g xylose, respectively, with 75.00% butyric acid in the total volatile fatty acids. As renewable energy, hydrogen was also collected from the xylose fermentation with a yield of about 73.86 mmol/L. The kinetics of growth and product formation indicated that the maximal cell growth rate (μ m ) and the specific butyric acid yield were 0.1466 h?1 and 3.6274 g/g cell (dry weight), respectively. The better performance in xylose fermentation showed C. butyricum B10 a potential application in efficient butyric acid production from lignocellulose.  相似文献   

11.
Corn meal hydrolyzed with amylases was used as the carbon source for producing acetic, propionic, and butyric acids via anaerobic fermentations. In this study, corn meal, containing 75% (w/w) starch, 20% (w/w) fibers, and 1.5% (w/w) protein, was first hydrolyzed using amylases at 60 degrees C. The hydrolysis yielded approximately 100% recovery of starch converted to glucose and 17.9% recovery of protein. The resulting corn meal hydrolyzate was then used, after sterilization, for fermentation studies. A co-culture of Lactococcus lactis and Clostridium formicoaceticum was used to produce acetic acid from glucose. Propionibacterium acidipropionici was used for propionic acid fermentation, and Clostridium tyrobutylicum was used for butyric acid production. These cells were immobilized on a spirally wound fibrous matrix packed in a fibrous-bed bioreactor (FBB) developed for multi-phase biological reactions or fermentation. The bioreactor was connected to a stirred-tank fermentor that provided pH and temperature controls via medium circulation. The fermentation system was operated at the recycle batch mode. Temperature and pH were controlled at 37 degrees C and 7.6, respectively, for acetic acid fermentation, 32 degrees C and 6.0, respectively, for propionic acid fermentation, and 37 degrees C and 6.0, respectively, for butyric acid production. The fermentation demonstrated a yield of approximately 100% and a volumetric productivity of approximately 1 g/(1 h) for acetic acid production. The propionic acid fermentation achieved an approximately 60% yield and a productivity of 2.12 g/(1 h), whereas the butyric acid fermentation obtained an approximately 50% yield and a productivity of 6.78 g/(1 h). These results were comparable to, or better than those fermentations using chemically defined media containing glucose as the substrate, suggesting that these carboxylic acids can be efficiently produced from direct fermentation of corn meal hydrolyzate. The corn fiber present as suspended solids in the corn meal hydrolyzate did not cause operating problem to the immobilized cell bioreactor as is usually encountered by conventional immobilized cell bioreactor systems. It is concluded that the FBB technology is suitable for producing value-added biochemicals directly from agricultural residues or commodities such as corn meal.  相似文献   

12.
AIMS: Assessment of individual production of organic acids by Lactobacillus acidophilus ATCC 4962 in the presence of mannitol, fructooligosaccharide (FOS) and inulin. METHODS AND RESULTS: The production patterns of individual organic acids by L. acidophilus ATCC 4962 were assessed using the experimental region for optimum cholesterol removal from the interaction between L. acidophilus ATCC 4962 and prebiotics selected in our previous study. The production of acetic and formic acids was growth associated and was greatly influenced by the inoculum size of the organism and the concentration of mannitol. The growth of the organism was repressed with the fermentation end products of FOS and inulin, which subsequently exhibited repressed production of acetic and formic acids as well. The inoculum size, mannitol and FOS linearly affected the formation of butyric acid and the response surface generated showed a correlation between butyric acid and acetic acid. The experimental regions with increased production of lactic acid showed cessation of growth of the organism, indicating inhibition of growth at high concentration of lactic acid. CONCLUSIONS: The production of individual organic acids was dependent on growth and the fermentability of prebiotics. Mannitol, FOS and inulin favoured the production of formic, lactic and butyric acids respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The fermentability of prebiotics to produce metabolites has been a controversial issue. Information gathered in this study provides a better understanding on the production of organic acids from fermentation of mannitol, FOS and inulin by L. acidophilus ATCC 4962, and on changes in their production as a response from interaction of factors.  相似文献   

13.
The actions of butyric and acetic acids on acetone-butanol fermentation are investigated. Production of butyric and acetic acids are controlled by the extracellular concentrations of both acids: acetic acid added to the medium inhibits its own formation but has no effect on butyric acid formation, and added butyric acid inhibits its own formation but not that of acetic acid. The ratio of end metabolites depends upon acetic and butyric acid quantities excreted during the fermentation. In contrast to acetic acid, which specifically increases acetone formation, butyric acid increases both acetone and butanol formations. Acetate and butyrate kinase activities were also examined. Both increase at the start of fermentation and decrease when solvents appear in the medium. Coenzyme A transferase activity is weak in the acidogenic phase and markedly increases in the solvent phase. Acetic and butyric acids appear to be co-substrates. On the basis of these results, a mechanism of acetic and butyric acid pathways, coupled to solvent formation by C. acetobutylicum glucose fermentation is proposed.  相似文献   

14.
两步发酵过程中有机酸对产1,3-丙二醇的影响   总被引:4,自引:0,他引:4  
考察了基因工程菌发酵生产1.3 丙二醇过程中,有机酸对发酵过程的影响,并选用了不同的离子交换树脂对甘油发酵液进行处理。发现有机酸、特别是乳酸对1.3丙二醇生产的抑制作用最明显。在使用离子交换树脂处理有机酸的过程中,确定了使用005号离子交换树脂处理效果最好,005号离子交换树脂可除去大部分的有机酸,处理后的发酵液发酵产1.3丙二醇产量比未处理的发酵液产量提高166%,转化率提高34%。  相似文献   

15.
The ability of cyclodextrins (CD) to form crystalline insoluble complexes with organics was explored in this study in view of a selective separation of dilute products obtainable from three clostridial fermentation systems. To this purpose, a product or a product mixture at a concentration of 0.150 mM each were treated with alpha-CD or beta-CD (0.150 mM) in aqueous solutions as well as in a nutrient broth as a simulated fermentation medium. In the acetone-butanol-ethanol system, and in the butanol-iso-propanol system, alpha-CD was found to precipitate selectively 48% and 46% butanol after 1 h agitation at 30 degrees C. However, beta-CD was found to be superior for the butyric acid-acetic acid system because it selectively precipitated 100% butyric acid under the same conditions. Cooling the three product system with alpha-CD to 4 degrees C for 24 h increased significantly the crop of precipitates but decreased the selectivity for either butanol or butyric acid. Cyclodextrins were thus shown to offer potentially a new exciting possibility for downstream processing of low-concentration fermentation products.  相似文献   

16.
The effects of ruminal concentrations of CO2 and O2 on glucose-stimulated and endogenous fermentation of the rumen isotrichid ciliate Dasytricha ruminantium were investigated. Principal metabolic products were lactic, butyric and acetic acids, H2 and CO2. Traces of propionic acid were also detected; formic acid present in the incubation supernatants was found to be a fermentation product of the bacteria closely associated with this rumen ciliate. 13C NMR spectroscopy revealed alanine as a minor product of glucose fermentation by D. ruminantium. Glucose uptake and metabolite formation rates were influenced by the headspace gas composition during the protozoal incubations. The uptake of exogenously supplied D-glucose was most rapid in the presence of O2 concentrations typical of those detected in situ (i.e. 1-3 microM). A typical ruminal gas composition (high CO2, low O2) led to increased butyrate and acetate formation compared to results obtained using O2-free N2. At a partial pressure of 66 kPa CO2 in N2, increased cytosolic flux to butyrate was observed. At low O2 concentrations (1-3 microM dissolved in the protozoal suspension) in the absence of CO2, increased acetate and CO2 formation were observed and D. ruminantium utilized lactate in the absence of extracellular glucose. The presence of both O2 and CO2 in the incubation headspaces resulted in partial inhibition of H2 production by D. ruminantium. Results suggest that at the O2 and CO2 concentrations that prevail in situ, the contribution made by D. ruminantium to the formation of ruminal volatile fatty acids is greater than previously reported, as earlier measurements were made under anaerobic conditions.  相似文献   

17.
Biotechnologically produced succinic acid has the potential to displace maleic acid and its uses and to become an important feedstock for the chemical industry. In addition to optimized production strains and fermentation processes, an efficient separation of succinic acid from the aqueous fermentation broth is indispensable to compete with the current petrochemical production processes. In this context, high molecular weight amines are known to be effective extractants for organic acids. For this reason, as a first step of isolation and purification, the reactive extraction of succinic acid was studied by mixing aqueous succinic acid solutions with 448 different amine–solvent mixtures as extraction agents (mixer-settler studies). The extraction agents consist either of one amine and one solvent (208 reactive extraction systems) or two amines and two solvents (240 reactive extraction systems). Maximum extraction yields of succinic acid from an aqueous solution with 423 mM succinic acid at pH 2.0 were obtained with more than 95% yield with trihexylamine solved in 1-octanol or with dihexylamine and diisooctylamine solved in 1-octanol and 1-hexanol. Applying these optimized reactive extraction systems with Escherichia coli fermentation broth resulted in extraction yields of 78–85% due to the increased ionic strength of the fermentation supernatant and the co-extraction of other organic acids (e.g., lactic acid and acetic acid), which represent typical fermentation byproducts.  相似文献   

18.
研究了酒色着色菌(Chromatium vinosum DSM185)利用产酸克雷伯氏菌(Klebsiella oxytoca HP1)发酵产氢废液进行光发酵和暗发酵产氢的可行性,以达到对产氢底物的充分利用和对产氢废液的进一步处理。研究结果表明C.vinosum可以利用K.oxytoca的发酵废液进行光发酵产氢和暗发酵产氢。C.vinosum发酵产氢后废液中残余还原糖和主要有机酸(丁酸)的含量明显降低,发酵产氢的最佳pH为6.5,添加0.1%(W/W)NH4Cl能促进产氢。在光照条件下丁酸利用率可达54.38%,产氢量达36.97 mL/mg;在黑暗条件下丁酸利用率可达36.01%,产氢量达37.50mL/mg。  相似文献   

19.
Butanol and butyric acid produced from acetone-butanol-ethanol (ABE) fermentation can be used to produce butyl butyrate, an important fragrance ester. However, low levels of butanol and butyric acid need to be purified from culture media first with energy-intensive distillation processes. In this study, a triphasic (organic/aqueous/fluorous) system is developed to esterify butanol and butyric acid in spent culture media into butyl butyrate directly without purification. The produced butyl butyrate forms a distinct organic phase floating on top and can then be separated easily. In a model system containing 37.1 g/L of butanol and 44.1 g/L of butyric acid, 57% of the butanol is converted to butyl butyrate after 8 h of esterification. With multiple cycles of esterification and product removal, butanol conversion can be further increased to 86%. When spent culture medium containing 7.12 g/L of butanol and 4.81 g/L of butyric acid is used for esterification, 38% of butanol (0.36 mmol) is consumed and 0.33 mmol of butyl butyrate is produced. However, when ABE fermentation and esterification are carried out simultaneously, only 0.042 mmol of butyl butyrate is produced, probably due to the incompatible pH requirements for cell growth (pH 5–7) and esterification (pH 2–3).  相似文献   

20.
Huang J  Cai J  Wang J  Zhu X  Huang L  Yang ST  Xu Z 《Bioresource technology》2011,102(4):3923-3926
Butyric acid is an important specialty chemical with wide industrial applications. The feasible large-scale fermentation for the economical production of butyric acid requires low-cost substrate and efficient process. In the present study, butyric acid production by immobilized Clostridium tyrobutyricum was successfully performed in a fibrous-bed bioreactor using Jerusalem artichoke as the substrate. Repeated-batch fermentation was carried out to produce butyric acid with a high butyrate yield (0.44 g/g), high productivity (2.75 g/L/h) and a butyrate concentration of 27.5 g/L. Furthermore, fed-batch fermentation using sulfuric acid pretreated Jerusalem artichoke hydrolysate resulted in a high butyric acid concentration of 60.4 g/L, with the yield of 0.38 g/g and the selectivity of ∼85.1 (85.1 g butyric acid/g acetic acid). Thus, the production of butyric acid from Jerusalem artichoke on a commercial scale could be achieved based on the system developed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号