首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Helicobacter pylori is a gram-negative pathogen that colonizes the stomachs of over half the world's population and causes a spectrum of gastric diseases including gastritis, ulcers, and gastric carcinoma. The H. pylori species exhibits unusually high levels of genetic variation between strains. Here we announce the complete genome sequence of H. pylori strain G27, which has been used extensively in H. pylori research.  相似文献   

2.
Simple sequence repeats (SSRs) or microsatellites are the repetitive nucleotide sequences of motifs of length 1–6 bp. They are scattered throughout the genomes of all the known organisms ranging from viruses to eukaryotes. Microsatellites undergo mutations in the form of insertions and deletions (INDELS) of their repeat units with some bias towards insertions that lead to microsatellite tract expansion. Although prokaryotic genomes derive some plasticity due to microsatellite mutations they have in-built mechanisms to arrest undue expansions of microsatellites and one such mechanism is constituted by post-replicative DNA repair enzymes MutL, MutH and MutS. The mycobacterial genomes lack these enzymes and as a null hypothesis one could expect these genomes to harbour many long tracts. It is therefore interesting to analyse the mycobacterial genomes for distribution and abundance of microsatellites tracts and to look for potentially polymorphic microsatellites. Available mycobacterial genomes, Mycobacterium avium, M. leprae, M. bovis and the two strains of M. tuberculosis (CDC1551 and H37Rv) were analysed for frequencies and abundance of SSRs. Our analysis revealed that the SSRs are distributed throughout the mycobacterial genomes at an average of 220–230 SSR tracts per kb. All the mycobacterial genomes contain few regions that are conspicuously denser or poorer in microsatellites compared to their expected genome averages. The genomes distinctly show scarcity of long microsatellites despite the absence of a post-replicative DNA repair system. Such severe scarcity of long microsatellites could arise as a result of strong selection pressures operating against long and unstable sequences although influence of GC-content and role of point mutations in arresting microsatellite expansions can not be ruled out. Nonetheless, the long tracts occasionally found in coding as well as non-coding regions may account for limited genome plasticity in these genomes. Supplementary Data pertaining to this article is available on the Journal of Biosciences Website at  相似文献   

3.
Simple sequence repeats as advantageous mutators in evolution   总被引:3,自引:0,他引:3  
  相似文献   

4.
5.
DNA macroarrays were used to characterize 17 Helicobacter pylori strains isolated in four geographic regions of Russia (Moscow, St. Petersburg, Kazan, and Novosibirsk). Of all genes, 1272 (81%) proved to occur in all strains and to constitute a functional core of the genome, and 293 (18.7%) were strain-specific and greatly varied among the H. pylori strains. Most (71%) of the latter had unknown functions; the remainder included restriction-modification genes (3-9%), transposition genes (2-4%), and genes coding for outer membrane proteins (2-4%). The Russian H. pylori strains did not differ in genome organization or in the number and distribution of strain-specific genes from strains isolated in other countries.  相似文献   

6.
Simple sequence repeats for the genetic analysis of apple   总被引:35,自引:0,他引:35  
 The development of highly informative markers, such as simple sequence repeats, for tagging genes controlling agronomic characters is essential for apple breeding. Furthermore the use of these markers is fundamental both for variety identification and for the characterisation and management of genetic resources. We have developed 16 reliable simple sequence repeat (SSR) markers that amplify all alleles from a panel of 19 Malus x domestica (Borkh.) cultivars or breeding selections and from Malus floribunda 821. Those markers show a high level of genetic polymorphism, with on average 8.2 alleles per locus and an average heterozygosity of 0.78. Due to this high level of polymorphism, it was possible using two selected SSRs to distinguish all cultivars except Starking and Red Delicious. Ten of the markers we developed have been mapped on a RAPD linkage map, proving their Mendelian segregation as well as their random distribution in the apple genome. Finally, we discuss the importance of using co-dominant markers in outbreeding species. Received: 8 October 1997 / Accepted: 9 December 1997  相似文献   

7.
Trace sequences from the 2X alpaca genome sequencing effort were examined to identify simple sequence repeats (microsatellites) for genetic studies. A total of 6,685 repeat-containing sequences were downloaded from GenBank, processed, and assembled into contigs representing an estimated 4,278 distinct sequences. This sequence set contained 2,290 sequences of length > 100 nucleotides that contained microsatellites of length > or = 14 dinucleotide or 10 trinucleotide repeats with purity equal to 100%. An additional 13 sequences contained a GC microsatellite of length > or = 12 repeats (purity = 100%) were also obtained. Primer pairs for amplification of 1,516 putative loci are presented. Amplification of genomic DNA from alpaca and llama by PCR was demonstrated for 14 primer sets including one from each of the microsatellite repeat types. Comparative chromosomal location for the alpaca markers was predicted in the bovine genome by BLAT searches against assembly 4.0 of the bovine whole genome sequence. A total of 634 markers (41.8%) returned BLAT hits with score > 100 and Identity > 85%, with the majority assignable to unique locations. We show that microsatellites are abundant and easily identified within the alpaca genome sequence. These markers will provide a valuable resource for further genetic studies of the alpaca and related species.  相似文献   

8.
Simple sequence repeats (SSRs) are omnipresent in prokaryotes and eukaryotes, and are found anywhere in the genome in both protein encoding and noncoding regions. In present study the whole genome sequences of seven chromosomes (Shigella flexneri 2a str301 and 2457T, Shigella sonnei, Escherichia coli k12, Mycobacterium tuberculosis, Mycobacterium leprae and Staphylococcus saprophyticus) have downloaded from the GenBank database for identifying abundance, distribution and composition of SSRs and also to determine difference between the tandem repeats in real genome and randomness genome (using sequence shuffling tool) of the organisms included in this study. The data obtained in the present study show that: (i) tandem repeats are widely distributed throughout the genomes; (ii) SSRs are differentially distributed among coding and noncoding regions in investigated Shigella genomes; (iii) total frequency of SSRs in noncoding regions are higher than coding regions; (iv) in all investigated chromosomes ratio of Trinucleotide SSRs in real genomes are much higher than randomness genomes and Di nucleotide SSRs are lower; (v) Ratio of total and mononucleotide SSRs in real genome is higher than randomness genomes in E. coli K12, S. flexneri str 301 and S. saprophyticus, while it is lower in S. flexneri str 2457T, S.sonnei and M. tuberculosis and it is approximately same in M. leprae; (vi) frequency of codon repetitions are vary considerably depending on the type of encoded amino acids.  相似文献   

9.
Simple sequence repeats are predominantly found in most organisms. They play a major role in studies of genetic diversity, and are useful as diagnostic markers for many diseases. The simple sequence repeats database (SSRD) for the human genome was created for easy access to such repeats, for analysis, and to be used to understand their biological significance. The data includes the abundance and distribution of SSRs in the coding and non-coding regions of the genome, as well as their association with the UTRs of genes. The exact locations of repeats with respect to genomic regions (such as UTRs, exons, introns or intergenic regions) and their association with STS markers are also highlighted. The resource will facilitate repeat sequence analysis in the human genome and the understanding of the functional and evolutionary significance of simple sequence repeats. SSRD is available through two websites, http://www.ccmb.res.in/ssr and http://www.ingenovis.com/ssr.  相似文献   

10.
Simple sequence repeat map of the sunflower genome   总被引:11,自引:0,他引:11  
Several independent molecular genetic linkage maps of varying density and completeness have been constructed for cultivated sunflower ( Helianthus annuus L.). Because of the dearth of sequence and probe-specific DNA markers in the public domain, the various genetic maps of sunflower have not been integrated and a single reference map has not emerged. Moreover, comparisons between maps have been confounded by multiple linkage group nomenclatures and the lack of common DNA markers. The goal of the present research was to construct a dense molecular genetic linkage map for sunflower using simple sequence repeat (SSR) markers. First, 879 SSR markers were developed by identifying 1,093 unique SSR sequences in the DNA sequences of 2,033 clones isolated from genomic DNA libraries enriched for (AC)(n) or (AG)(n) and screening 1,000 SSR primer pairs; 579 of the newly developed SSR markers (65.9% of the total) were polymorphic among four elite inbred lines (RHA280, RHA801, PHA and PHB). The genetic map was constructed using 94 RHA280 x RHA801 F(7) recombinant inbred lines (RILs) and 408 polymorphic SSR markers (462 SSR marker loci segregated in the mapping population). Of the latter, 459 coalesced into 17 linkage groups presumably corresponding to the 17 chromosomes in the haploid sunflower genome ( x = 17). The map was 1,368.3-cM long and had a mean density of 3.1 cM per locus. The SSR markers described herein supply a critical mass of DNA markers for constructing genetic maps of sunflower and create the basis for unifying and cross-referencing the multitude of genetic maps developed for wild and cultivated sunflowers.  相似文献   

11.
Simple sequence repeats in Cucumis mapping and map merging.   总被引:14,自引:0,他引:14  
Thirty-four polymorphic simple-sequence repeats (SSRs) were evaluated for length polymorphism in melon (Cucumis melo L.) and cucumber (Cucumis sativus L.). SSR markers were located on three melon maps (18 on the map of 'Vedrantais' and PI 161375, 23 on the map of 'Piel de Sapo' and PI 161375, and 16 on the map of PI 414723 and 'Dulce'). In addition, 14 of the markers were located on the cucumber map of GY14 and PI 183967. SSRs proved to be randomly distributed throughout the melon and cucumber genomes. Mapping of the SSRs in the different maps led to the cross-identification of seven linkage groups in all melon maps. In addition, nine SSRs were common to both melon and cucumber maps. The potential of SSR markers as anchor points for melon-map merging and for comparative mapping with cucumber was demonstrated.  相似文献   

12.
Simple sequence repeats (SSRs) are becoming standard DNA markers for plant genome analysis and are being used as markers in marker assisted breeding. And hence because of its great significance we have initiated this study to analyze complete genome of Arabidopsis thaliana for the prevalence of mono-, di-, tri-, tetra-, penta- and hexa- mer repeats in the coding and non-coding regions of the chromosome and to map their exact position on the sequence. We have developed a program that can search a repeat of any length, its exact position on the chromosome and also its frequency of occurrence in the genome. Analysis of the results reveal that maximum number of repeats were found in chromosome 1 followed by chromosome 2 and 4 whereas, chromosome 3 and 5 contain relatively less number of these repeats. Among the SSRs, hexamers and dimers were more predominant in the chromosomes. Overall data showed that Chromosome 5 has minimum number of repeats. The abundance or rarity of various simple repeats in different chromosomes is not explained by nucleotide composition of sequence or potential repeated motifs to form alternative DNA structures. This suggests that in addition to nucleotide composition of repeat motifs, characteristic DNA replication / repair / recombination machinery might play an important role in genesis of repeats. The positional information is given at www.geocities.com/amubioinfo/ARD. This positional information can help Arabidopsis researchers to identify new polymorphisms in chromosomal regions of interest based on the SSRs that map in the area.  相似文献   

13.
The zebrafish has drawn a great deal of attention as a developmental system because it offers the ability to combine excellent embryology and genetics. Here, we report that simple sequence repeats are abundant in the zebrafish genome and are highly polymorphic between two outbred lines, making them useful markers for the construction of a genetic map of this organism.  相似文献   

14.
15.
Simple sequence repeats (SSRs) can be derived from the complete genome sequence. These markers are important for gene mapping as well as marker-assisted selection (MAS). To develop SSRs for cotton gene mapping, we selected the complete genome sequence of Gossypium raimondii, which consisted of 4447 non-redundant scaffolds. Out of 775.2 Mb sequence examined, a total of 136,345 microsatellites were identified with a density of 5.69 kb per SSR in the G. raimondii genome leading to development of 112,177 primer pairs. The distributions of SSRs in the genome were non-random. Among the different motifs ranging from 1 to 6 bp, penta-nucleotide repeats were most abundant (30.5%), followed by tetra-nucleotide repeats (18.2%) and di-nucleotide repeats (16.9%). Among all identified 457 motif types, the most frequently occurring repeat motifs were poly-AT/TA, which accounted for 79.8% of the total di-nt SSRs, followed by AAAT/TTTA with 51.5% of the total tetra-nucleotede. Further, 18,834 microsatellites were detected from the protein-coding genes, and the frequency of gene containing SSRs was 46.0% in 40,976 genes of G. raimondii. These genome-based SSRs developed in the present study will lay the groundwork for developing large numbers of SSR markers for genetic mapping, gene discovery, genetic diversity analysis, and MAS breeding in cotton.  相似文献   

16.
Complete chromosome/genome sequences available from humans, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, and Saccharomyces cerevisiae were analyzed for the occurrence of mono-, di-, tri-, and tetranucleotide repeats. In all of the genomes studied, dinucleotide repeat stretches tended to be longer than other repeats. Additionally, tetranucleotide repeats in humans and trinucleotide repeats in Drosophila also seemed to be longer. Although the trends for different repeats are similar between different chromosomes within a genome, the density of repeats may vary between different chromosomes of the same species. The abundance or rarity of various di- and trinucleotide repeats in different genomes cannot be explained by nucleotide composition of a sequence or potential of repeated motifs to form alternative DNA structures. This suggests that in addition to nucleotide composition of repeat motifs, characteristic DNA replication/repair/recombination machinery might play an important role in the genesis of repeats. Moreover, analysis of complete genome coding DNA sequences of Drosophila, C. elegans, and yeast indicated that expansions of codon repeats corresponding to small hydrophilic amino acids are tolerated more, while strong selection pressures probably eliminate codon repeats encoding hydrophobic and basic amino acids. The locations and sequences of all of the repeat loci detected in genome sequences and coding DNA sequences are available at http://www.ncl-india.org/ssr and could be useful for further studies.  相似文献   

17.
18.
19.
20.
Helicobacter pylori colonizes about half of the world's population. It is a causative agent of stomach diseases, including malignant tumors. We report the genome sequence of strain N6, which is widely used in H. pylori research and appreciated for its large cell size and high transformation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号