首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
In narrow‐leafed lupin (Lupinus angustifolius), segregation for the necrotic (systemic hypersensitive) response to infection with a necrotic strain of Bean yellow mosaic virus (BYMV‐N) was studied in progeny plants from six crosses. The parents were two cultivars that always developed necrosis when infected (Danja and Merrit) and two genotypes that always responded without necrosis (90L423‐07‐13 and P26697). In the four possible combinations of crosses between the different necrotic and non‐necrotically reacting genotypes, segregation for the necrotic response in F2 progeny plants always fitted a 3:1 ratio (necrotic: non‐necrotic). All F2 progeny plants from the cross between the two non‐cultivar genotypes became infected without necrosis while 99% of the F2 from the cross between the two cultivars developed necrosis. These results indicate that the systemic necrotic response to infection with BYMV‐N is probably controlled by a single dominant hypersensitivity gene for which we propose the name Nbm‐1. However, its expression seemed influenced by independently segregating modifier genes in the genetic background since necrosis developed at widely different rates within affected F2 progeny plants resulting in staggered killing.  相似文献   

2.
After evaluation of the responses of bean and broad bean common cultivars against an isolate of Cucumber mosaic virus (CMV-K) and Bean yellow mosaic virus (BYMV-K), interaction of isolates was statistically studied on co-infected plants of bean cv. Bountiful and broad bean cv. Lahijan at two trials. Based on viral relative concentration determined by quantitative enzyme-linked immunosorbent assay, BYMV interacts synergistically with CMV in bean at 14 days post inoculation, while in co-infection with BYMV, CMV interacts antagonistically in both host plants at least in one of the two trials. This suggests that CMV/BYMV interaction is dependent on host species and developmental stage of plant. Co-infection like single infection with CMV in bean plants led to significantly decrease in plants’ height and fresh weight than BYMV singly infected and healthy plants, while viral infection of broad bean plants did not significantly affect growth parameters. Decline effect of viral infection (especially co-infection) on chlorophyll and carotenoids value of bean plants was greater than those of broad bean. Viral infection (singly or doubly) caused irregular changes in nutrient elements values of both hosts compared with healthy ones.  相似文献   

3.
The polymerase chain reaction (PCR) method readily detected bean yellow mosaic virus (BYMV) in gladioli leaves, but in initial tests PCR did not detect virus in corm tissue. Extracts of RN A from corm tissue were shown to inhibit the amplification of viral sequences when added to a PCR reaction. An additional purification step for the RNA extracts using a Sephadex G-50 column eliminated the inhibitory effect and enabled PCR to amplify and detect viral RNA in corm tissue preparations.  相似文献   

4.
Earlier attempts to discriminate serologically strains NL1, NL3 and NY15 of bean common mosaic virus (BCMV) and strain W of blackeye cowpea mosaic virus (B1CMV) had been unsuccessful. Antibodies directed towards N- and C-, or N-terminal peptide regions of the coat proteins of the above strains enabled the distinction between B1CMV-W, BCMV-NY15 and BCMV-NL3 in electroblot immunoassay and in ELISA. The distinction was better with antibodies directed towards N-termini than with those to N- and C-termini. Strain NL1 of BCMV cross-reacted with both B1CMV-W and BCMV-NY15, but not with BCMV-NL3. Taxonomic implications of these findings are discussed.  相似文献   

5.
6.
Glasshouse and field studies were done to determine the relative roles of different colonising and non-colonising aphid species as vectors of two non-persistently transmitted viruses, cucumber mosaic cucumovirus (CMV) and bean yellow mosaic potyvirus (BYMV) in narrow-leafed lupin (Lupinus angustifolius) crops in Australia. The abilities of nine different aphid species in transmitting CMV from infected to healthy lupins and BYMV from infected subterranean clover to healthy lupins were compared in the glasshouse using 5–10 min acquisition access feeds. The percentage transmission efficiencies found with lupin-colonising aphid species were (CMV/BYMV): Acyrthosiphon kondoi (6/15), Aphis craccivora (10/14) and Myzus persicae (11/77). With non-colonising species the respective efficiencies were: Brachycaudus rumexicolens (0.9/0), Lipaphis erysimi (4/8), Rhopalosiphum maidis (9/6), R. padi (5/5), Sitobion miscanthi (2/11) and Therioaphis trifolii (4/5). When flying aphids were trapped in the field in four successive years (1993–1996) on vertical nets downwind of virus-infected lupins, 13 different species were caught at a “wheatbelt” site and 18 at an urban irrigated site. Of 2833 aphids caught at the “wheatbelt” site, 64 transmitted CMV to lupin test plants. At the irrigated site, numbers of aphids transmitting CMV/numbers caught were 12/186 while the corresponding numbers for BYMV were 11/727. M. persicae, A. kondoi and R. padi transmitted both viruses, while additional vectors of CMV found were A. craccivora, Acyrthosiphon pisum, B. rumexicolens, L erysimi, R. insertum, T. trifolii and Toxoptera citricidus. Averaged over four years, A. kondoi accounted for 50% of CMV transmissions at the “wheatbelt” site, M. persicae for 16% and R. padi for 22%, and these three species were caught in the greatest numbers, comprising 28%, 13% and 37% respectively of the total catch. At the irrigated site R. padi accounted for half the CMV transmissions, while R. padi and A. kondoi together accounted for most of the BYMV transmissions. R. padi, A. kondoi, M. persicae and T. citridus were the most common aphid species at this site. These findings suggest that M. persicae, A. kondoi and R. padi are the aphid species likely to be most important as vectors of CMV and BYMV in narrow-leafed lupins grown in mediterranean-type climatic zones of southern Australia.  相似文献   

7.
In glasshouse tests, infective sap from plants infected with 17 different isolates of Tomato spotted wilt virus (TSWV) from four Australian states was inoculated to three Capsicum chinense accessions (PI 152225, PI 159236 and C00943) carrying single genes that confer hypersensitive resistance to TSWV. The normal response to inoculation was development of necrotic (hypersensitive) local lesions in inoculated leaves without systemic invasion, but 3/1386 infected plants also developed systemic susceptible reactions in addition to hypersensitive ones. Similarly when two isolates were inoculated to C. chinense backcross progeny plants, 1/72 developed systemic susceptible reactions in addition to localised hypersensitive ones. Using cultures from the four plants with susceptible reactions and following three to five further cycles of serial subculture in TSWV‐resistant C. chinense plants, four isolates were obtained that gave systemic susceptible type reactions in the three TSWV‐resistant accessions, and in TSWV‐resistant cultivated pepper (C. annuum). When three of these isolates were inoculated to tomato (Lycopersicon esculentum) breeding lines with single gene resistance to TSWV, resistance was not overcome. Similarly, none of the four isolates overcame partial resistance to TSWV in Lactuca virosa. When TSWV isolates were inoculated to tomato breeding lines carrying partial resistance from L. chilense, systemic infection developed which was sometimes followed by ‘recovery’. After four successive cycles of serial passage in susceptible cultivated pepper of a mixed culture of a resistance‐breaking isolate with the non resistance‐breaking isolate from which it came, the resistance‐breaking isolate remained competitive as both were still found. However, when the same resistance‐ breaking isolate was cultured alone, evidence of partial reversion to wild‐type behaviour was eventually obtained after five but not four cycles of long term serial subculture in susceptible pepper, as by then the culture had become a mixture of both types of strain. This work suggests that resistance‐breaking strains of TSWV that overcome single gene hypersensitive resistance in pepper are relatively stable. The findings have important implications for situations where resistant pepper cultivars are deployed widely in the field without taking other control measures as part of an integrated TSWV management strategy.  相似文献   

8.
Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is one of the most devastating sugar beet diseases. Sugar beet plants engineered to express a 0.4 kb inverted repeat construct based on the BNYVV replicase gene accumulated the transgene mRNA to similar levels in leaves and roots, whereas accumulation of the transgene-homologous siRNA was more pronounced in roots. The roots expressed high levels of resistance to BNYVV transmitted by the vector, Polymyxa betae. Resistance to BNYVV was not decreased following co-infection of the plants with Beet soil borne virus and Beet virus Q that share the same vector with BNYVV. Similarly, co-infection with the aphid-transmitted Beet mild yellowing virus, Beet yellows virus (BYV), or with all of the aforementioned viruses did not affect the resistance to BNYVV, while they accumulated in roots. These viruses are common in most of the sugar beet growing areas in Europe and world wide. However, there was a competitive interaction between BYV and BMYV in sugar beet leaves, as infection with BYV decreased the titres of BMYV. Other interactions between the viruses studied were not observed. The results suggest that the engineered resistance to BNYVV expressed in the sugar beets of this study is efficient in roots and not readily compromised following infection of the plants with heterologous viruses.  相似文献   

9.
Transmission of Potato yellow mosaic virus (PYMV) (bipartite begomovirus) to tomato by 50 Bemisia tabaci biotype B individuals was observed when the acquisition access period (AAP) was at least 3 h and the inoculation access period (IAP) at least 30 min. The transmission efficiency increased with the access period to reach 92% transmission after a 48‐h IAP and 48‐h AAP. The transmission efficiency decreased when whiteflies were fed on PYMV non‐host plant between AAP and IAP. According to these results, we inoculated nine Solanum accessions with 50 whiteflies (48‐h APP and 48‐h IAP) to assess their resistance level. Four of these accessions with various levels of resistance were graft inoculated with PYMV. Although none of the accessions were immune, we observed a high level of resistance to PYMV in Solanumpimpinellifolium LA2187‐5 (no symptoms after vector or graft inoculation) and in Solanum chilense LA1969 (no symptoms after vector inoculation and one plant with symptoms after graft inoculation). Inheritance of LA2187‐5 resistance, investigated in F1 and F2 populations, appeared to be recessive. Fewer plants were infected by PYMV in S. pimpinellifolium LA1478 after vector inoculation than after graft inoculation. We hypothesised that this was because of vector resistance, which could also be effective against other begomoviruses.  相似文献   

10.
The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses:zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). The genetics of resistance to WMV and the relationship of WMV resistance to ZYMV resistance were examined. TMG-1 was crossed with WI-2757, a susceptible inbred line. F1, F2 and backcross progeny populations were screened for resistance to WMV and/or ZYMV. Two independently assorting factors conferred resistance to WMV. One resistance was conferred by a single recessive gene from TMG-1 (wmv-2). The second resistance was conferred by an epistatic interaction between a second recessive gene from TMG-1 (wmv-3) and either a dominant gene from WI-2757 (Wmv-4) or a third recessive gene from TMG-1 (wmv-4) located 20–30 cM from wmv-3. The two resistances exhibited tissue-specific expression. Resistance conferred by wmv-2 was expressed in the cotyledons and throughout the plant. Resistance conferred by wmv-3 + Wmv-4 (or wmv-4) was expressed only in true leaves. The gene conferring resistance to ZYMV appeared to be the same as, or tightly linked to one of the WMV resistance genes, wmv-3.  相似文献   

11.
12.
Cantaloupe line CZW-30 containing coat protein gene constructs of cucumber mosaic cucumovirus (CMV), zucchini yellow mosaic potyvirus (ZYMV), and watermelon mosaic virus 2 potyvirus (WMV-2) was investigated in the field over two consecutive years for resistance to infections by CMV, ZYMV, and/or WMV-2. Resistance was evaluated under high disease pressure achieved by mechanical inoculations and/or natural challenge inoculations by indigenous aphid vectors. Across five different trials, homozygous plants were highly resistant in that they never developed systemic symptoms as did the nontransformed plants but showed few symptomatic leaves confined close to the vine tips. Hemizygous plants exhibited a significant delay (2–3 weeks) in the onset of disease compared to control plants but had systemic symptoms 9–10 weeks after transplanting to the field. Importantly, ELISA data revealed that transgenic plants reduced the incidence of mixed infections. Only 8% of the homozygous and 33% of the hemizygous plants were infected by two or three viruses while 99% of the nontransformed plants were mixed infected. This performance is of epidemiological significance. In addition, control plants were severely stunted (44% reduction in shoot length) and had poor fruit yield (62% loss) compared to transgenic plants, and most of their fruits (60%) were unmarketable. Remarkably, hemizygous plants yielded 7.4 times more marketable fruits than control plants, thus suggesting a potential commercial performance. This is the first report on extensive field trials designed to assess the resistance to mixed infection by CMV, ZYMV, and WMV-2, and to evaluate the yield of commercial quality cantaloupes that are genetically engineered.  相似文献   

13.
为了更好地从肠道微生物组中挖掘新的次级代谢产物、了解肠道微生物组编码的抗生素耐药基因和毒力因子情况,本研究基于4 644株人体肠道微生物代表菌的基因组序列,对其编码的次级代谢产物基因簇、抗生素耐药基因和毒力因子进行了预测分析。经antiSMASH预测分析发现,超过60%的代表菌编码至少1个次级代谢产物基因簇,并从8个未可培养菌中发现了8个潜在的新颖次级代谢产物基因簇。人体肠道中的次级代谢产物主要由梭菌纲(Clostridia)、芽孢杆菌纲(Bacilli)、γ-变形菌纲(Gammaproteobacteria)、拟杆菌纲(Bacteroidia)、放线菌纲(Actinobacteria)和厚壁菌纲(Negativicutes)6类细菌编码的非核糖体多肽合成酶(nonribosomal peptide synthetase,NRPS)、细菌素、芳基多烯类化合物、萜烯、β-丙内酯、NRPS-样蛋白组成。经PathoFact预测分析发现,抗生素耐药基因和毒力因子在代表性菌株中分布广泛,但潜在病原菌编码频率更高。潜在病原菌中编码外膜蛋白、PapC N-端结构域、PapC C-端结构域、肽酶M16失活结构域等分泌型毒素和硝基还原酶家族、AcrB/AcrD/AcrF家族、PLD-样结构域、Cupin结构域、假定溶血素、S24-样肽酶、磷酸转移酶家族、内切核酸酶/外切核酸酶/磷酸酶家族、乙二醛酶/博莱霉素抗性等非分泌型毒素的频率较高。该研究将为进一步从肠道微生物组中挖掘新的微生物天然产物、了解肠道微生物的定殖与感染机制,为肠道微生物相关疾病提供靶向防治策略等奠定基础。  相似文献   

14.
Summary In order to study possible functions of the inclusion body matrix protein (IBMP) encoded by gene VI of cauliflower mosaic virus (CaMV), the XbaI fragment containing the gene VI of a Japanese strain of CaMV (CaMV S-Japan) was transferred to tobacco plants by Ti mediated transformation. Eight out of 18 kanamycin resistant plants (40%) expressed detectable levels of IBMP. Those transgenic plants expressing IBMP produced leaves with light green color, and their growth was suppressed as compared with control plants. Symptom-like necrotic spots also appeared on the leaves and stems of the mature transgenic plants. Furthermore, in these transgenic plants, pathogenesis-related proteins 1a, 1b and 1c were highly expressed and the activity of 1,3--glucanase was increased up to eightfold. From these results, we concluded that expression of the IBMP is associated with symptom development.  相似文献   

15.
Hypersensitive resistance (HR) to strains O and C of Potato virus Y (PVY, genus Potyvirus) is conferred by potato genes Nytbr and Nctbr, respectively; however, PVY N strains overcome these resistance genes. The viral helper component proteinases (HCpro, 456 amino acids) from PVYN and PVYO are distinguished by an eight‐amino‐acid signature sequence, causing HCpro to fold into alternative conformations. Substitution of only two residues (K269R and R270K) of the eight‐amino‐acid signature in PVYN HCpro was needed to convert the three‐dimensional (3D) model of PVYN HCpro to a PVYO‐like conformation and render PVYN avirulent in the presence of Nytbr, whereas four amino acid substitutions were necessary to change PVYO HCpro to a PVYN‐like conformation. Hence, the HCpro conformation rather than other features ascribed to the sequence were essential for recognition by Nytbr. The 3D model of PVYC HCpro closely resembled PVYO, but differed from PVYN HCpro. HCpro of all strains was structurally similar to β‐catenin. Sixteen PVYN605‐based chimeras were inoculated to potato cv. Pentland Crown (Nytbr), King Edward (Nctbr) and Pentland Ivory (Nytbr/Nctbr). Eleven chimeras induced necrotic local lesions and caused no systemic infection, and thus differed from both parental viruses that infected King Edward systemically, and from PVYN605 that infected Pentland Crown and Pentland Ivory systemically. These 11 chimeras triggered both Nytbr and Nctbr and, in addition, six induced veinal necrosis in tobacco. Further, specific amino acid residues were found to have an additive impact on necrosis. These results shed new light on the causes of PVY‐related necrotic symptoms in potato.  相似文献   

16.
After graft inoculation with rubus yellow net virus (RYNV), 12 of 34 Rubus species and cultivars developed noticeable symptoms. R. macraei developed the most conspicuous symptoms and is recommended as an improved indicator plant. In attempts to determine the cause of raspberry veinbanding mosaic, a disease in which RYNV is involved, several European and North American red raspberry cvs were graft-inoculated with RYNV and three other aphid-borne viruses, black raspberry necrosis (BRNV), raspberry leaf mottle (RLMV) and raspberry leaf spot, singly and in all combinations. In periods of up to 4 yr, classical veinbanding mosaic symptoms developed in sensitive cvs only when they contained both RYNV and RLMV. These symptoms were intensified in plants co-infected with additional viruses. Veinbanding mosaic disease did not develop in any of 11 cvs infected with RYNV + BRNV, the combination of viruses previously assumed to be responsible for this disease in Britain and North America.  相似文献   

17.
Papaya leaf curl disease (PLCD) was recorded with 5–35% incidence at six districts of Eastern Uttar Pradesh during survey. The characteristic symptoms observed were severe downward leaf curling, swelling of veins, twisting and reduction of petioles, inverted leaf bowls and stunted growth of the entire plant which bore only few small and distorted fruit. The virus isolate was identified as Papaya leaf curl virus (PaLCuV).The PaLCuV isolate was successfully transmitted by whitefly (Bemisia tabaci) but not by mechanical (sap) transmission on Carica papaya plants. Plants could be proved efficiently from infected to healthy C. papaya, Capsicum annuum, Lycopersicon esculentum, Nicotiana tabacum, Crotalaria juncea, Ageratum conyzoides, Zinnia elegans, Datura stramonium and Petunia hybrida. Symptomatic samples of these plants were tested with polyclonal antiserum of Tomato leaf curl New Delhi virus by DAC-ELISA test showed the positive relationship of the samples with geminivirus. On the basis of symptomatology, whitefly transmission, host range studies and serological relationship, the isolate was identified as whitefly transmitted geminivirus. To identify potential varietal resistances source to PaLCuV, five cultivars of C. papaya were tested against PaLCuV using whitefly insects to transmit the infection. Results revealed that two cultivars (Washington and Ranchi Dwarf) were found to be moderately resistant.  相似文献   

18.
Summary A single dominant factor, Hss, that conditions a rapid lethal necrotic response to soybean mosaic virus (SMV) has been identified in Phaseolus vulgaris L. cv. Black Turtle Soup, line BT-1. Inoculated plants carrying this factor developed pinpoint necrotic lesions on inoculated tissue followed by systemic vascular necrosis and plant death within about 7 days, regardless of ambient temperature. BT-1 also carries dominant resistance to potyviruses attributed to the tightly linked or identical factors, I, Bcm, Cam, and Hsw, so linkage with Hss was evaluated. No recombinants were identified among 381 F3 families segregating for potyvirus susceptibility, thus if Hss is a distinct factor, it is tightly linked to I, Bcm, Cam, and Hsw. BT-1 was also crossed reciprocally with the line Great Northern 1140 (GN 1140) in which the dominant gene, Smv, for systemic resistance to SMV was first identified. Smv and Hss segregated independently and are co-dominant. The (GN 1140 x BT-1) F1 populations showed a seasonal shift of the codominant phenotype. Evaluation of the (GN 1140 x BT-1) F2 population under conditions where Smv is partially dominant allowed additional phenotypic classes to be distinguished. Pathotype specificity has not been demonstrated for either Smv or Hss. Genotypes that are homozygous for both dominant alleles are systemically resistant to the virus and in addition show undetectable local viral replication or and no seed transmission. This work demonstrates that a gene which conditions a systemic lethal response to a pathogen may be combined with additional gene(s) to create an improved resistant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号