首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reconstituted actomyosin (ATP phosphohydrolase, EC 3.6.1.3) (0.400 mg F-actin/mg myosin) in 10.0 muM ATP loses 96% of its specific ATPase activity when its reaction concentration is decreased from 42.0 mug/ml down to 0.700 mug/ml. The loss of specific activity at the very low enzyme concentrations is prevented by the addition of more F-actin to 17.6 mug/ml. It is concluded that at low actomyosin concentrations the complex dissociates into free myosin with a very low specific ATPase activity and free F-actin with no ATPase. The dissociation of the essential low molecular weight subunits of myosin from the heavy chains at very low actomyosin concentrations may be a contributing factor. Actomyosin has its maximum specific activity at pH 7.8-8.2. The Km for ATP is 9.4 muM, which is at least 20-fold greater than myosin's Km for ATP. The actin-activated ATPase of myosin follows hyperbolic kinetics with varying F-actin concentrations. The Km values for F-actin are 0.110 muM (4.95 mug/ml) at pH 7.4 and 0.241 muM (10.8 mug/ml) at pH 7.8. The actin-activated maximum turnover numbers for myosin are 9.3 s-1 at pH 7.4 and 11.6 s-1 at pH 7.8. The actomyosin ATPase is inhibited by KCl. This KCl inhibition is not competitive with respect to F-actin, and it is not a simple form of non-competitive inhibition.  相似文献   

2.
Dissociation and reassociation of rabbit skeletal muscle myosin.   总被引:2,自引:0,他引:2  
J Wikman-Coffelt  S Srivastava  D T Mason 《Biochimie》1979,61(11-12):1309-1314
Whereas dissociation of rabbit skeletal muscle myosin light chains occurs at an increased temperature (25 degrees) and in the absence of divalent cations, reassociation of the myosin oligomer requires a low temperature (4 degrees C) and the presence of divalent cations, thus resulting in the original light to heavy chain stoichiometry. With a 5-10 per cent release of alkali light chains, LC1 and LC3, and a 50 per cent dissociation of the Ca2+ binding light chain, LC2, there is no significant decrease in myosin ATPase activity irrespective of the cation activator, however, there is an approximate 15-20 per cent decrease in actomyosin ATPase activity. With reassociation of the myosin oligomer, actomyosin ATPase activity is partially restored as well as the original number of Ca2+ binding sites.  相似文献   

3.
It was demonstrated that the dialdehyde derivative of ATP is a good substrate for Ca-ATPase of heavy meromyosin (Km = (1.2-1.4) X 10(-4) M; V = VATP). At the same time, this compound can induce irreversible inhibition of the enzyme. Since oxo-ATP is rapidly hydrolyzed by myosin to form oxo-ADP, this inhibition is the result of the enzyme interaction with oxo-ADP. It was found that the kinetics of heavy meromyosin inhibition by oxo-ADP are typical of affinity modification; in this case ATP fully protects heavy meromyosin from the activity loss. Similar results on the irreversible inhibition of the ATPase activity under the action of oxo-ADP were obtained in the presence of myosin, heavy meromyosin, subfragment I and natural actomyosin and in the absence of bivalent cations, thus suggesting the modification of the active center of myosin ATPase.  相似文献   

4.
The kinetic mechanism of myosin V is of great interest because recent evidence indicates that the two-headed myosin V molecule functions as a processive motor, i.e., myosin V is capable of moving along an actin filament for many catalytic cycles of the motor without dissociating. Three recent publications assessing the kinetics of single-headed myosin V provide different conclusions regarding the mechanism, particularly the rate-limiting step of the cycle. One study (, Proc. Natl. Acad. Sci. USA. 96:13726-13731) identifies ADP release as the rate-limiting step and provides a kinetic explanation for myosin V processivity. The others (, J. Biol. Chem. 274:27448-27456;, J. Biol. Chem. 275:4329-4335) do not identify the rate-limiting step but conclude that it is not ADP release. We show experimental and simulated data demonstrating that the inconsistencies in the reports may be due to difficulties in the measurement of the steady-state ATPase rate. Under standard assay conditions, ADP competes with ATP, resulting in product inhibition of the ATPase rate. This presents technical problems in analyzing and interpreting the kinetics of myosin V and likely of other members of the myosin family with high ADP affinities.  相似文献   

5.
It was shown that the highly purified monoaldehyde derivative of ADP obtained by partial reduction of the dialdehyde derivative of ADP causes strong irreversible inhibition of the Ca-ATPase activity of myosin subfragment I, the inhibiting effect being of the affinity modification type. The addition to the reaction medium of Mg2+ (but not Ca2+) during the subfragment I interaction with the inhibitor fully prevents the inhibiting effect at all substrates used (Ca-, Mg- or K, EDTA-ATPases). Contrariwise, the subfragment I modified in the absence of Mg2+ exhibits the same degree of inhibition for all the three types of the ATPase activity. An unexpected result that was previously unobserved for other affinity modifiers of myosin ATPase is the maintenance of activity in 50% of active centers, when "two-head" forms of the enzyme (the myosin proper and heavy meromyosin, HMM) are modified. Noteworthy that the affinity modification reaction is characterized by the same values of inhibition constants as in the case of myosin subfragment I (Ki = 3.3-3.5 X 10(-4) M; ki = 0.03-0.04 min-1). This finding provides additional evidence in favour of functional asymmetry of myosin heads in the myosin molecule which seems to be due to the screening of the active center of one head by the other one.  相似文献   

6.
The effect of staphylococcus active substances--protein A (PA) and peptidoglican (PG) at concentrations 10(-6)-10(-2) mg/ml on the ATPase activity of pig stomach natural actomyosin and myosin was studied. It was shown that PA and PG at direct contact with smooth muscle contractile proteins caused the activation and inhibition of ATPase activity, respectively. On the basis of this investigation it was assumed that staphylococcal active substances were able to modify of the ATPase activity smooth muscle contractile proteins perhaps via direct action on the myosin molecule, which could be accompanied by conformational changes of the active center of myosin ATPase.  相似文献   

7.
Watanabe S  Mabuchi K  Ikebe R  Ikebe M 《Biochemistry》2006,45(8):2729-2738
There are three isoforms of class V myosin in mammals. While myosin Va has been studied well, little is known about the function of other myosin V isoforms (Vb and Vc) at a molecular level. Here we report the mechanoenzymatic function of human myosin Vb (HuM5B) for the first time. Electron microscopic observation showed that HuM5B has a double-headed structure with a long neck like myosin Va. V(max) and K(actin) of the actin-activated ATPase activity of HuM5B were 9.7 +/- 0.4 s(-)(1) and 8.5 +/- 0.1 microM, respectively. K(actin) and K(ATP) of the actin-activated ATPase activity were significantly higher than those of myosin Va. ADP markedly inhibited the ATPase activity. The rate of release of ADP from acto-HuM5B was 12.2 +/- 0.5 s(-)(1), which was comparable to the V(max) of the actin-activated ATPase activity. These results suggest that ADP release is the rate-limiting step for the actin-activated ATPase cycle; thus, HuM5B is a high duty ratio myosin. Consistently, the actin gliding velocity (0.22 +/- 0.03 microm/s) remained constant at a low motor density. The actin filament landing assay revealed that a single HuM5B molecule is sufficient to move the actin filament continuously, indicating that HuM5b is a processive motor.  相似文献   

8.
Whereas dissociation of rabbit skeletal muscle myosin light chains occurs at an increased temperature (25°) and in the obsence of divalent cations, reassociation of the myosin oligomer requires a low temperature (4°C) and the presence of divalent cations, thus resulting in the original light to heavy chain stoichiometry. With a 5–10 per cent release of alkali light chains, LC1 and LC3, and a 50 per cent dissociation of the Ca2+ binding light chain, LC2, there is no significant decrease in myosin ATPase activity irrespective of the cation activator, however, there is an approximate 15–20 per cent decrease in actomyosin ATPase activity. With reassociation of the myosin oligomer, actomyosin ATPase activity is partially restored as well as the original number of Ca2+ binding sites.  相似文献   

9.
The effect of nantenine, an aporphine alkaloid, on ATPase K+-dependent dephosphorylation was evaluated using p-nitrophenylphosphate (p-NPP) as substrate. Basal K+-p-NPPase activity was significantly increased with 3 x 10(-4) M, remained unchanged with 3 x 10(-6) M, 3 x 10(-5) M but was reduced with 7.5 x 10(-4) M and 1 x 10(-3) M nantenine, whereas Mg2+-p-NPPase activity was not modified. Kinetic studies showed that K+-p-NPPase inhibition by nantenine is competitive to KCl but non-competitive to substrate p-NPP, whereas K+-p-NPPase stimulation by nantenine is non-competitive to KCl but competitive to p-NPP. These data suggest that there may be two acceptor sites for nantenine in p-NPPase, one eliciting stimulation and the other inhibition of K+-dependent p-NPP hydrolysis. Considering the biphasic action of nantenine on seizures and the correlation between decreased ATPase activity and seizure development, alkaloid anticonvulsant effect observed at low nantenine doses is attributable to the stimulation of phosphatase activity whereas the convulsant effect at high alkaloid doses seems related to Na+, K+-ATPase inhibition.  相似文献   

10.
Using purified recombinant human ventricular myosin light chain 1 (HVMLC 1) as the antigen,three monoclonal antibodies,designated C8,C9 and B 12,were prepared.Immunoblot experiments demonstratedthat all monoclonal antibodies could react with the ventricular myosin light chain 1 isolated from differentsources,such as human,rat or pig.It was also demonstrated that C8 was directed against the NN part of theN-fragment (amino acid 1-40) of HVMLC1,and both C9 and B12 against the C-fragment (amino acid 99-195).The affinity constants of C8,C9 and B12 were 3.20×10~8,8.60×10~7 and 1.77×10~8 M~(-1),respectively,determined by non-competitive ELISA.The isotype of B12 was determined as lgG2a,whereas the isotype ofboth C8 and C9 were IgG1.In the presence of C9 or B12,the actin-activated Mg~(2 )ATPase activity of myosinwas greatly inhibited,but there was almost no effect on the Mg~(2 )ATPase activity for C8.B12 and C9 alsoinhibited the superprecipitation of porcine cardiac native actomyosin (myosin B) and reconstituted actomyosin,but C8 did not.The results indicate that all three monoclonal antibodies could bind the intact myosin molecule,but B12 and C9 might more easily react with epitopes located in the C-fragment of HVMLC1.The inhibitoryeffects of B 12 and C9 on ATPase activity and superprecipitation assays show that light chain 1,particularlythe C-fragment domain,is involved in the modulation of the actin-activated Mg~(2 )ATPase activity of myosinand,as a consequence,plays an essential role in the interaction of actin and myosin.  相似文献   

11.
Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto normotensive rats (WKY) were subjected to swimming training 6 times/wk, commencing at 4 wk of age, to determine whether this type of endurance exercise might alter contractile proteins and cardiac function in young adult SHR. The total duration of exercise was 190 h. Myofibrillar adenosinetriphosphatase (ATPase) activity was assayed at various free [Ca2+] ranging from 10(-7) to 10(-5) M. Ca2+-stimulated ATPase activity of actomyosin and purified myosin was determined at various Ca2+ concentrations both in the low and high ionic strength buffers. Actin-activated myosin ATPase activity of purified myosin was assayed at several concentrations of actin purified from rabbit skeletal muscle. Under all these conditions the contractile protein ATPase activity was comparable between trained and untrained WKY and SHR. Analysis of myosin isoenzymes on pyrophosphate gels showed a single band corresponding to V1 isoenzyme, and there were no differences between swimming-trained and nontrained WKY and SHR. Ventricular performance was assessed by measuring cardiac output and stroke volume after rapid intravenous volume overloading. Both cardiac index and stroke index were comparable in nontrained WKY and SHR but were significantly increased in the trained groups compared with their respective nontrained controls. These results suggest that myosin ATPase activity and distribution of myosin isoenzymes are not altered in the moderately hypertrophied left ventricle whether the hypertrophy is due to genetic hypertension (SHR) or to exercise training (trained WKY). Moreover, the data indicate that SHR, despite the persistence of a pressure overload, undergo similar increases in left ventricular mass and peak cardiac index after training, as do normotensive WKY.  相似文献   

12.
《The Journal of cell biology》1983,96(6):1761-1765
Tomato activation inhibiting protein (AIP) is a molecule of an apparent molecular weight of 72,000 that co-purifies with tomato actin. In an assay system containing rabbit skeletal muscle F-actin and rabbit skeletal muscle myosin subfragment-1 (myosin S-1), tomato AIP dissociated the acto-S-1 complex in the absence of Mg+2ATP and inhibited the ability of F-actin to activate the low ionic strength Mg+2ATPase activity of myosin S-1. At a molar ratio of 5 actin to 1 AIP, a 50% inhibition of the actin-activated Mg+2ATPase activity of myosin S-1 was observed. The inhibition can be reversed by raising the calcium ion concentration to 1 X 10(-5) M. The AIP had no effect on the basal low ionic strength Mg+2ATPase activity of myosin S-1 in the absence of actin. The protein did not bind directly to actin nor did it cause depolymerization or aggregation of F-actin but appeared, instead, to interact with the actin binding site on myosin S-1. Since AIP is a potent, reversible inhibitor of the rabbit acto-S-1 ATPase activity, it is postulated that it may be responsible for the low levels of actin activation exhibited by tomato F-actin fractions containing the AIP.  相似文献   

13.
Mouse myosin V is a two-headed unconventional myosin with an extended neck that binds six calmodulins. Double-headed (heavy meromyosin-like) and single-headed (subfragment 1-like) fragments of mouse myosin V were expressed in Sf9 cells, and intact myosin V was purified from mouse brain. The actin-activated MgATPase of the tissue-purified myosin V, and its expressed fragments had a high V(max) and a low K(ATPase). Calcium regulated the MgATPase of intact myosin V but not of the fragments. Both the MgATPase activity and the in vitro motility were remarkably insensitive to ionic strength. Myosin V and its fragments translocated actin at very low myosin surface densities. ADP markedly inhibited the actin-activated MgATPase activity and the in vitro motility. ADP dissociated from myosin V subfragment 1 at a rate of about 11.5 s(-1) under conditions where the V(max) was 3.3 s(-1), indicating that, although not totally rate-limiting, ADP dissociation was close to the rate-limiting step. The high affinity for actin and the slow rate of ADP release helps the myosin head to remain attached to actin for a large fraction of each ATPase cycle and allows actin filaments to be moved by only a few myosin V molecules in vitro.  相似文献   

14.
Ventricular myosin ATPase activity, V1 isomyosin content and serum T3 (tri-iodothyronine) values decrease with age in male Fischer 344 rats. To determine if the age decrement in ATPase activity and V1 isomyosin content are caused by decreased T3 levels or an age-related decrease in V1 isomyosin induction by T3, 3-, 12- and 24-month-old male Fischer 344 rats were given constant T3 infusions by osmotic minipump. Rats at all ages were given 0.75, 5 and 15 micrograms(/100 g per 24 h) doses of T3, whereas 12- and 24-month-old rats were given an additional 0.4 microgram dose. In control rats, T3 levels decreased from 97 +/- 2.7 at 3 months to 75 +/- 4.7 ng/100 ml at 24 months. Likewise, Ca2+-activated myosin ATPase activity decreased from 1.04 +/- 0.05 to 0.68 +/- 0.05 mumol of Pi/min per mg of protein, and the relative proportion of V1 of isomyosin decreased from 90 +/- 4.0 to 26 +/- 2.0%. The lowest (0.4 microgram) T3 dose, which was sufficient to restore T3 levels in 24-month-old animals to 3-month control values, abolished the age decrement in myosin ATPase activity and markedly increased the proportion of V1 isomyosin present in the ventricle. These findings indicate that the senescent ventricle responds readily to small doses of T3 and strongly suggest that the age decrement in serum T3 levels is sufficient to contribute to the age-related decrease in myosin ATPase activity and V1 isomyosin content. Since these parameters correlate with ventricular contractility, the age decrement in T3 levels may also contribute to the decreased ventricular contractility and cardiac output observed in senescent rats.  相似文献   

15.
Myosin light chain kinase (MLCK) is a multifunctional regulatory protein of smooth muscle contraction [IUBMB Life 51 (2001) 337, for review]. The well-established mode for its regulation is to phosphorylate the 20 kDa myosin light chain (MLC 20) to activate myosin ATPase activity. MLCK exhibits myosin-binding activity in addition to this kinase activity. The myosin-binding activity also stimulates myosin ATPase activity without phosphorylating MLC 20 [Proc. Natl. Acad. Sci. USA 96 (1999) 6666]. We engineered an MLCK fragment containing the myosin-binding domain but devoid of a catalytic domain to explore how myosin is stimulated by this non-kinase pathway. The recombinant fragment thus obtained stimulated myosin ATPase activity by V(max)=5.53+/-0.63-fold with K(m)=4.22+/-0.58 microM (n=4). Similar stimulation figures were obtained by measuring the ATPase activity of HMM and S1. Binding of the fragment to both HMM and S1 was also verified, indicating that the fragment exerts stimulation through the myosin heads. Since S1 is in an active form regardless of the phosphorylated state of MLC 20, we conclude that the non-kinase stimulation is independent of the phosphorylating mode for activation of myosin.  相似文献   

16.
Monoclonal and polyclonal antibodies that bind to myosin-II were tested for their ability to inhibit myosin ATPase activity, actomyosin ATPase activity, and contraction of cytoplasmic extracts. Numerous antibodies specifically inhibit the actin activated Mg++-ATPase activity of myosin-II in a dose-dependent fashion, but none blocked the ATPase activity of myosin alone. Control antibodies that do not bind to myosin-II and several specific antibodies that do bind have no effect on the actomyosin-II ATPase activity. In most cases, the saturation of a single antigenic site on the myosin-II heavy chain is sufficient for maximal inhibition of function. Numerous monoclonal antibodies also block the contraction of gelled extracts of Acanthamoeba cytoplasm. No polyclonal antibodies tested inhibited ATPase activity or gel contraction. As expected, most antibodies that block actin-activated ATPase activity also block gel contraction. Exceptions were three antibodies M2.2, -15, and -17, that appear to uncouple the ATPase activity from gel contraction: they block gel contraction without influencing ATPase activity. The mechanisms of inhibition of myosin function depends on the location of the antibody-binding sites. Those inhibitory antibodies that bind to the myosin-II heads presumably block actin binding or essential conformational changes in the myosin heads. A subset of the antibodies that bind to the proximal end of the myosin-II tail inhibit actomyosin-II ATPase activity and gel contraction. Although this part of the molecule is presumably some distance from the ATP and actin-binding sites, these antibody effects suggest that structural domains in this region are directly involved with or coupled to catalysis and energy transduction. A subset of the antibodies that bind to the tip of the myosin-II tail appear to inhibit ATPase activity and contraction through their inhibition of filament formation. They provide strong evidence for a substantial enhancement of the ATPase activity of myosin molecules in filamentous form and suggest that the myosin filaments may be required for cell motility.  相似文献   

17.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

18.
Modification of chicken gizzard myosin with phenyl[2-14C]-glyoxal inhibited the K+-ATPase (ATP phosphohydrolase, EC 3.6.1.32) activity as a function of time. During the 2.5 and 15 min interval 3.2 mol of the reagent were incorporated per 4.7 X 10(5) g protein and the K+-ATPase activity was 50% inhibited. Phenylglyoxal reacted with arginine residues of gizzard myosin in a mol ratio of two to one, phenylglyoxal to arginine as determined spectrophotometrically. The modification was limited to the subfragment 1 heavy chain and rod-like regions and none of the light chains were lost. The inhibition of the ATPase activity occurred when the subfragment 1 region was modified predominantly. The same results were obtained when the myosin was phosphorylated and then incubated with phenylglyoxal. Substrate MgATP2- or MgADP enhanced the inactivation of gizzard myosin; there was an increase in the incorporation of the reagent and a change in the distribution into the heavy chains. Approx. 0.5 mol of the nucleotide was bound to 4.7 X 10(5) g of phenylglyoxal myosin. Conformational changes, induced by these modifications, were responsible for the inhibition of enzymic activity. Arginine residues of gizzard myosin are necessary for the maintenance of the ATPase activity of this contractile protein.  相似文献   

19.
Eight monoclonal antibodies that bind to specific sites on the tail of Dictyostelium discoideum myosin were tested for their effects on polymerization and ATPase activity. Two antibodies that bind close to the myosin heads inhibited actin activation of the ATPase either partially or completely, without having an effect on polymerization. Two other antibodies bind to sites within the distal portion of the tail that has been shown, by cleavage mapping, to be important for polymerization. One of these antibodies binds close to the sites of heavy chain phosphorylation which is known to regulate both myosin polymerization and actin-activated ATPase activity. Both antibodies showed strong inhibition of polymerization accompanied by complete inhibition of the actin-activated ATPase activity. A unique effect was obtained with an antibody that binds to the end of the myosin tail. This antibody prevented the formation of bipolar filaments. It caused myosin to assemble into unipolar filaments with heads at one end and the antibody molecules at the other. Only at concentrations higher than required for its effect on polymerization did this antibody show substantial inhibition of the actin-activated ATPase. These results indicate that, using a monoclonal antibody as a blocking agent, parallel assembly of myosin can be dissected out from antiparallel association, and that essentially normal actin-activated ATPase activity could be obtained after significant reductions in filament size.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号