首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
C-type lectins are Ca(2+)-dependent carbohydrate-recognition proteins that play crucial roles in innate immunity. The cDNA of C-type lectin (AiCTL1) in the bay scallop Argopecten irradians was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of AiCTL1 was 660 bp, consisting of a 5'-terminal untranslated region (UTR) of 30 bp and a 3' UTR of 132 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The AiCTL1 cDNA encoded a polypeptide of 166 amino acids with a putative signal peptide of 20 amino acid residues and a mature protein of 146 amino acids. The deduced amino acid sequence of AiCTL1 was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 121 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. AiCTL1 mRNA was dominantly expressed in the hemocytes of the bay scallop. The temporal expression of AiCTL1 mRNA in hemocytes was increased by 5.7- and 4.9-fold at 6h after injury and 8h after injection of bacteria, respectively. The structural features, high similarity and expression pattern of AiCTL1 indicate that the gene may be involved in injury healing and the immune response in A. irradians.  相似文献   

5.
6.
7.
C-type lectins play important roles in the non-self innate immune system of invertebrates. In this study, we isolated the full-length cDNA of the C-type lectin like-domain (CTLD)-containing protein, designated PtLP, from the hepatopancreas of the swimming crab Portunus trituberculatus, one of the most common edible crabs of East Asia. The PtLP cDNA consists of 923bp and encodes a polypeptide of 164 amino acids containing a well-conserved C-type lectin like-domain (CTLD). The deduced amino acid sequence of PtLP shows 29-36% amino acid sequence identity to other crustacean C-type lectin sequences. A phylogenetic analysis revealed that PtLP is in a large cluster together with black tiger shrimp PmAV, a gene involved in virus resistance of shrimp, and all of the C-type lectins from the various shrimps. Quantitative RT-PCR analysis showed that the PtLP mRNA was expressed highly in hepatopancreas and moderately in gills, hemocytes, and ovary of normal swimming crabs.  相似文献   

8.
C-type lectins play crucial roles in innate immunity to recognize and eliminate pathogens efficiently. In the present study, two C-type lectins from shrimp Litopenaeus vannamei (designated as LvLectin-1 and LvLectin-2) were identified, and their expression patterns, both in tissues and toward pathogen stimulation, were then characterized. The full-length cDNA of LvLectin-1 and LvLectin-2 was 567 and 625 bp, containing an open reading frame (ORF) of 471 and 489 bp, respectively, and deduced amino acid sequences showed high similarity to other members of C-type lectin superfamily. Both two C-type lectins encoded a single carbohydrate-recognition domain (CRD). The motif of Ca2+ binding site 2 in CRD, which determined carbohydrate-binding specificity, was QPN (Gln122-Pro123-Asn124) in LvLectin-1, but QPD (Gln128-Pro129-Asp130) in LvLectin-2. Two C-type lectins exhibited similar tissue expression pattern, for their mRNA were both constitutively expressed in all tested tissues, including hepatopancreas, muscle, gill, hemocytes, gonad and heart, furthermore they were both mostly expressed in hepatopancreas, though the expression level of LvLectin-2 was much higher than LvLectin-1. The expression level of two C-type lectins mRNA in hemocytes varied greatly after the challenge of Listonella anguillarum or WSSV. After L. anguillarum challenge, the expression of both C-type lectins were significantly (P < 0.01) up-regulated compared with blank group, and LvLectin-1 exhibited higher level than LvLectin-2; while after the stimulation of WSSV, the expression of LvLectin-2 was significantly up-regulated at 6 h (P < 0.01) and 12 h (P < 0.05), but the expression level of LvLectin-1 down-regulated significantly (P < 0.01) to 0.4-fold at 6 and 12 h post-stimulation. The results indicated that the two C-type lectins might be involved in immune response toward pathogen infection, and they might perform different recognition specificity toward bacteria or virus.  相似文献   

9.
10.
The complete amino acid sequence of the lectin from Bothrops jararacussu snake venom (BJcuL) is reported. The sequence was determined by Edman degradation and amino acid analysis of the S-carboxymethylated BJcuL derivative (RC-BJcuL) and from its peptides originated from enzymatic digestion. The sequence of amino acid residues showed that this lectin displays the invariant amino acid residues characterized in C-type lectins. Amino acids analysis revealed a high content of acidic amino acids and leucine. These findings suggest that BJcuL, like other snake venom lectins, possesses structural similarities to the carbohydrate recognition domain (CRD) of calcium-dependent animal lectins belonging to the C-type -galactoside binding lectin family.  相似文献   

11.
C-type lectin and galectin are two types of animal carbohydrate-binding proteins which serve as pathogen recognition molecules and play crucial roles in the innate immunity of invertebrates. In the present study, a C-type lectin (designated as SgCTL-1) and galectin (designated as SgGal-1) were identified from mollusk Solen grandis, and their expression patterns, both in tissues and toward three pathogen-associated molecular patterns (PAMPs) stimulation were characterized. The full-length cDNA of SgCTL-1 and SgGal-1 was 1280 and 1466 bp, containing an open reading frame (ORF) of 519 and 1218 bp, respectively. Their deduced amino acid sequences showed high similarity to other members of C-type lectin and galectin superfamily, respectively. SgCTL-1 encoded a single carbohydrate-recognition domain (CRD), and the motif of Ca(2+)-binding site 2 was EPN (Glu(135)-Pro(136)-Asn(137)). While SgGal-1 encoded two CRDs, and the amino acid residues constituted the carbohydrate-binding motifs were well conserved in CRD1 but partially conserved in CRD2. Although SgCTL-1 and SgGal-1 exhibited different tissue expression pattern, they were both constitutively expressed in all tested tissues, including hemocytes, gonad, mantle, muscle, gill and hepatopancreas, and they were both highly expressed in hepatopancreas and gill. Furthermore, the mRNA expression of two lectins in hemocytes was significantly (P < 0.01) up-regulated with different levels after S. grandis were stimulated by lipopolysaccharide (LPS), peptidoglycan (PGN) or β-1,3-glucan. Our results suggested that SgCTL-1 and SgGal-1 from razor clam were two novel members of animal lectins, and they might function as pattern recognition receptors (PRRs) taking part in the process of pathogen recognition.  相似文献   

12.
13.
Coagulation factor IX-binding protein (IX-bp) isolated from the venom of the habu snake (Trimeresurus flavoviridis) is a disulfide-linked heterodimer consisting of homologous subunits A and B. The structure of IX-bp has been solved by X-ray crystallography at 2.6 A resolution to a crystallographic R -value of 0.181. The main-chain fold of each subunit is homologous to the carbohydrate-recognition domain of C-type lectins (C-type CRDs) except for the extended central loop. The structure is almost identical with that of factors IX and X-binding protein (IX/X-bp) as expected from the high level of amino acid sequence homology. The functional difference in ligand recognition from IX/X-bp must reside in the amino acid differences. A continuity of different amino acid residues located from the C-terminal of the second alpha-helix to the following loop forms the local conformational difference in this region between the two proteins. This loop participates in the formation of the concave surface between the two subunits, the putative binding site for the Gla-domain (gamma-carboxyglutamic acid-containing domain) of the coagulation factors. Another difference between the two proteins is in the relative disposition of subunits A and B. When the B subunits are superimposed, about a 6 degrees rotation is required for the superposition of the A subunits. A calcium ion links the second alpha-helix region to the C-terminal tail in each subunit and helps to stabilize the structure for Gla-domain binding. The interface created by the central loop swapping in the dimer IX-bp is almost identical with that seen within the monomeric C-type CRDs. This dimer forms as the result of the amino acid deletion in the linker region of the central loop of the original C-type lectins. Such a dimerization disrupts the lectin active site and creates a Gla-domain binding site, imparting functional diversity.  相似文献   

14.
15.
The rat hepatic asialoglycoprotein receptor mediates clearance of galactose- and N-acetylgalactosamine-terminated glycoproteins by endocytosis, binding ligands through a C-type, Ca(2+)-dependent carbohydrate-recognition domain (CRD) at extracellular pH and releasing them at lower pH in endosomes. At physiological Ca(2+) concentrations, the midpoint for ligand release from the CRD of the major subunit of the receptor is pH 7.1. In contrast, the midpoint is pH 5.0 for a galactose-binding derivative of the homologous C-type CRD of serum mannose-binding protein, which would thus not efficiently release ligand at an endosomal pH of 5.4. Site-directed mutagenesis of the CRD from the major subunit of the asialoglycoprotein receptor has been used to identify residues that are essential for efficient release of ligand at endosomal pH. The effects of changes to residues His(256), Asp(266), and Arg(270) singly and in combination indicate that these residues reduce the affinity of the CRD for Ca(2+), so that ligands are released at physiological Ca(2+) concentrations. The proximity of these three residues to the ligand-binding site at Ca(2+) site 2 of the domain suggests that they form a pH-sensitive switch for Ca(2+) and ligand binding. Introduction of histidine and aspartic acid residues into the mannose-binding protein CRD at positions equivalent to His(256) and Asp(266) raises the pH for half-maximal binding of ligand to 6.1. The results, as well as sequence comparisons with other C-type CRDs, confirm the importance of these residues in conferring appropriate pH dependence in this family of domains.  相似文献   

16.
17.
C-type lectins (CTLs) acting as pattern recognition receptors play essential roles in shrimp innate immune responses. Using WSSV envelope proteins (VP26, VP28, and VP281) to screen a phage display library of Marsupenaeus japonicus, three lectins (termed as MjLecA, MjLecB, and MjLecC) were found to interact with WSSV. Sequence analysis revealed that these MjLecs shared low similarities with each other. Phylogenetic analysis indicated MjLecA and MjLecB are likely to belong to the same lectin sub-family, while MjLecC belongs to another sub-family. These MjLecs showed broad, unique carbohydrate binding spectra. Also, the three MjLecs could interact with several envelope proteins of WSSV and could recognize a wide range of microorganisms. Moreover, binding of MjLecA or MjLecB to WSSV reduced the viral infection rate in vitro. These results suggest that various kinds of CTLs with structural and functional diversities may constitute a recognizing network against invading pathogens such as bacteria and virus, and play essential roles in the defence system of shrimp.  相似文献   

18.
Shi XZ  Yu XQ 《Amino acids》2012,42(6):2383-2391
Our previous research showed that immulectin-2 (IML-2), a C-type lectin from the tobacco hornworn, Manduca sexta, is a pattern recognition receptor (PRR) that can bind to pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), peptidoglycan (PG) and β-1,3-glucan, and IML-2 plays an important role in cellular encapsulation, melanization, phagocytosis, and prophenoloxidase (proPO) activation. Unlike most mammalian C-type lectins that contain a single carbohydrate-recognition domain (CRD), IML-2 is composed of tandem CRDs, and the C-terminal CRD2 contains an extended loop, which is not present in most C-type CRDs. We hypothesize that the extended loop may participate in ligand binding, encapsulation, melanization, phagocytosis and/or proPO activation in M. sexta. To test this hypothesis, two deletion mutant proteins (IML-2Δ220-244 and IML-2Δ220-257), in which the extended loop of the CRD2 was partially or completely deleted, were expressed and purified. By comparing the characteristics of recombinant IML-2, IML-2Δ220-244 and IML-2Δ220-257, we found that deletion of the extended loop in CRD2 impaired the ability of IML-2 to bind microbial PAMPs and to stimulate proPO activation, indicating that the extended loop of IML-2 plays an important role in ligand binding and biological functions.  相似文献   

19.
20.
CEL-IV is a C-type lectin isolated from a sea cucumber, Cucumaria echinata. This lectin is composed of four identical C-type carbohydrate-recognition domains (CRDs). X-ray crystallographic analysis of CEL-IV revealed that its tetrameric structure was stabilized by multiple interchain disulfide bonds among the subunits. Although CEL-IV has the EPN motif in its carbohydrate-binding sites, which is known to be characteristic of mannose binding C-type CRDs, it showed preferential binding of galactose and N-acetylgalactosamine. Structural analyses of CEL-IV-melibiose and CEL-IV-raffinose complexes revealed that their galactose residues were recognized in an inverted orientation compared with mannose binding C-type CRDs containing the EPN motif, by the aid of a stacking interaction with the side chain of Trp-79. Changes in the environment of Trp-79 induced by binding to galactose were detected by changes in the intrinsic fluorescence and UV absorption spectra of WT CEL-IV and its site-directed mutants. The binding specificity of CEL-IV toward complex oligosaccharides was analyzed by frontal affinity chromatography using various pyridylamino sugars, and the results indicate preferential binding to oligosaccharides containing Galβ1-3/4(Fucα1-3/4)GlcNAc structures. These findings suggest that the specificity for oligosaccharides may be largely affected by interactions with amino acid residues in the binding site other than those determining the monosaccharide specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号