首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A wide range of human disorders involves inappropriate regulation of NF-kappaB, including cancers and numerous inflammatory conditions. Toward our goal to define mechanisms through which NF-kappaB leads to the development of disease, we have developed transgenic mice that express luciferase under the control of NF-kappaB, enabling real-time in vivo imaging of NF-kappaB activity in intact animals. We show that in the absence of extrinsic stimulation, strong luminescence is evident in lymph nodes in the neck region, thymus, and Peyer's patches. Treating mice with TNF-alpha, IL-1alpha, or LPS increased the luminescence in a tissue-specific manner, with the strongest activity observed in skin, lungs, spleen, Peyer's patches, and the wall of the small intestine. Liver, kidney, heart, muscle, and adipose tissue displayed less intense activities. Also, exposure of skin to a low dose of UV radiation increased luminescence in the exposed areas. Furthermore, induction of chronic inflammation resembling rheumatoid arthritis produced strong NF-kappaB activity in the affected joints, as revealed by in vivo imaging. Thus, we have developed a versatile model for monitoring NF-kappaB activation in vivo.  相似文献   

2.
3.
Class II (Ia) major histocompatibility complex molecules are cell surface proteins normally expressed by a limited subset of cells of the immune system. These molecules regulate the activation of T cells and are required for the presentation of antigens and the initiation of immune responses. The expression of Ia in B cells is determined by both the developmental stage of the B cell and by certain external stimuli. It has been demonstrated previously that treatment of B cells with lipopolysaccharide (LPS) results in increased surface expression of Ia protein. However, we have confirmed that LPS treatment results in a significant decrease in mRNA encoding the Ia proteins which persists for at least 18 h. Within the upstream regulatory region of A alpha k, an NF-kappa B-like binding site is present. We have identified an LPS-induced DNA-binding protein in extracts from athymic mice whose spleens consist predominantly of B cells. Binding activity is present in low levels in unstimulated spleen cells and is increased by LPS treatment. This protein binds to two sites in a regulatory region of the Ia A alpha k gene, one of which contains the NF-kappa B-like binding site. DNA fragments containing these sites cross-compete for protein binding. Analysis by DNase I footprinting identified a target binding sequence, named the LPS-responsive element. Although this target sequence contains an NF-kappa B-like binding site, competition with a mutant oligonucleotide demonstrated that bases critical for NF-kappa B binding are not required for binding of the LPS-inducible protein. Therefore, we hypothesized that this inducible protein represents a new mediator of LPS action, distinct from NF-kappa B, and may be one mechanism to account for the decrease in mRNA encoding the Ia proteins.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
It has been proposed that the gamma-herpesviruses maintain lifelong latency in B cells by gaining entry into the memory B cell pool and taking advantage of host mechanisms for maintaining these cells. We directly tested this hypothesis by kinetically monitoring viral latency in CD40(+) and CD40(-) B cells from CD40(+)CD40(-) mixed bone marrow chimera mice after infection with a murine gamma-herpesvirus, MHV-68. CD40(+) B cells selectively entered germinal centers and differentiated into memory B cells. Importantly, latency was progressively lost in the CD40(-) B cells and preferentially maintained in the long-lived, isotype-switched CD40(+) B cells. These data directly demonstrate viral exploitation of the normal B cell differentiation pathway to maintain latency.  相似文献   

14.
Maintenance of muscle mass is not dependent on the calcineurin-NFAT pathway   总被引:3,自引:0,他引:3  
In this study, the role of the calcineurinpathway in skeletal muscle atrophy and atrophy-reducing interventionswas investigated in rat soleus muscles. Because calcineurin has beensuggested to be involved in skeletal and cardiac muscle hypertrophy, we hypothesized that blocking calcineurin activity would eliminate beneficial effects of interventions that maintain muscle mass in theface of atrophy-inducing stimuli. Hindlimb suspension and spinal cordtransection were used to induce atrophy, and intermittent reloading andexercise were used to reduce atrophy. Cyclosporin (CsA, 25 mg · kg1 · day1) wasadministered to block calcineurin activity. Soleus muscles were studied14 days after the onset of atrophy. CsA administration did not inhibitthe beneficial effects of the two muscle-maintaining interventions, nordid it change muscle mass in control or atrophied muscles, suggestingthat calcineurin does not play a role in regulating muscle size duringatrophy. However, calcineurin abundance was increased in atrophiedsoleus muscles, and this was associated with nuclear localization ofNFATc1 (a nuclear factor of activated T cells). Therefore, resultssuggest that calcineurin may be playing opposing roles during skeletalmuscle atrophy and under muscle mass-maintaining conditions.

  相似文献   

15.
16.
The activation of nuclear factor kappa B (NF-kappa B) in intact cells is mechanistically not well understood. Therefore we investigated the modifications imposed on NF-kappa B/I kappa B components following stimulation and show that the final step of NF-kappa B induction in vivo involves phosphorylation of several members of the NF-kappa B/I kappa B protein families. In HeLa cells as well as in B cells, TNF-alpha rapidly induced nuclear translocation primarily of p50-p65, but not of c-rel. Both NF-kappa B precursors and I kappa B alpha became strongly phosphorylated with the same kinetics. In addition to the inducible phosphorylation after stimulation, B lymphocytes containing constitutive nuclear NF-kappa B revealed constitutively phosphorylated p65 and I kappa B alpha. Phosphorylation was accompanied by induced processing of the precursors p100 and p105 and by degradation of I kappa B alpha. As an in vitro model we show that phosphorylation of p105 impedes its ability to interact with NF-kappa B, as has been shown before for I kappa B alpha. Surprisingly, even p65, but not c-rel, was phosphorylated after induction in vivo, suggesting that TNF-alpha selectively activates only specific NF-kappa B heteromers and that modifications regulate not only I kappa B molecules but also NF-kappa B molecules. In fact, cellular NF-kappa B activity was phosphorylation-dependent and the DNA binding activity of p65-containing NF-kappa B was enhanced by phosphorylation in vitro. Furthermore, we found that the induction by hydrogen peroxide of NF-kappa B translocation to the nucleus, which is assumed to be triggered by reactive oxygen intermediates, also coincided with incorporation of phosphate into the same subunits that were modified after stimulation by TNF-alpha. Thus, phosphorylation appears to be a general mechanism for activation of NF-kappa B in vivo.  相似文献   

17.
18.
Insertional mutations in the spo0A and spoIIAC genes of Bacillus sphaericus 2362 were prepared by conjugation with Escherichia coli using a suicide plasmid containing cloned portions of the target genes. The mutants resembled their Bacillus subtilis counterparts phenotypically and were devoid of crystal proteins as determined by electron microscopy, SDS-PAGE and Western blots. The mutants had greatly reduced toxicity to anopheline mosquito larvae compared to the parental strain. We conclude that crystal protein synthesis in this bacterium is dependent on expression of early sporulation genes.  相似文献   

19.
Previous studies have demonstrated that peptides corresponding to a six-amino-acid NEMO-binding domain from the C terminus of IkappaB kinase alpha (IKKalpha) and IKKbeta can disrupt the IKK complex and block NF-kappaB activation. We have now mapped and characterized the corresponding amino-terminal IKK-binding domain (IBD) of NEMO. Peptides corresponding to the IBD were efficiently recruited to the IKK complex but displayed only a weak inhibitory potential on cytokine-induced NF-kappaB activity. This is most likely due to the formation of sodium dodecyl sulfate- and urea-resistant NEMO dimers through a dimerization domain at the amino terminus of NEMO that overlaps with the region responsible for binding to IKKs. Mutational analysis revealed different alpha-helical subdomains within an amino-terminal coiled-coil region are important for NEMO dimerization and IKKbeta binding. Furthermore, NEMO dimerization is required for the tumor necrosis factor alpha-induced NF-kappaB activation, even when interaction with the IKKs is unaffected. Hence, our data provide novel insights into the role of the amino terminus of NEMO for the architecture of the IKK complex and its activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号