首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical method for the assessment of the exposure of workers to the pesticide propoxur through biological monitoring has been developed. This study was part of a survey of occupational exposure to pesticides used in greenhouses for the growing of ornamental plants. In order to assess the actual absorbed amount of propoxur in the body, an analytical method for its metabolite 2-isopropoxyphenol in urine was required. This led to the development of a gas chromatographic—mass spectrometric assay involving hydrolysis and solvent extraction. A mass-selective detector, operated in single-ion mode, provides a selective and sensitive quantification of 2-isopropoxyphenol with a detection limit of 6 μg/l. The method has been validated with respect to the hydrolysis of urine samples, analytical recovery of 2-isopropoxyphenol, stability of its conjugates, limit of detection, background and precision. The analytical recovery from spiked urine was over 95%. 2-Isopropoxyphenol was excreted in urine as a conjugate and was stable for at least seven months when stored at − 20°C. It was not detected in urine from non-exposed persons. Between-day coefficients of variation were 20, 10, 7 and 4% for concentrations of 15, 29, 150 and 213 μg/l, respectively. Measured as 2-isopropoxyphenol, ca. 80% of an orally administered dose of propoxur was excreted in urine within 10 h.  相似文献   

2.
The analytical method described permits the determination of 2-dimethylamino-5,6-dimethyl-4-hydroxypyrimidine (DDHP), 2-methylamino-5,6-dimethyl-4-hydroxypyrimidine (MDHP) and 2-amino-5,6-dimethyl-4-hydroxypyrimidine (ADHP) in human urine. These hydroxypyrimidines are metabolites of pirimicarb (2-dimethylamino-5,6-dimethylpyrimidin-4-yldimethylcarbamate) which is applied as insecticide. The analytes are extracted into a mixture of diethyl ether and acetonitrile. Pentafluorobenzyl bromide serves as derivatising reagent. The derivatives are analysed using capillary gas chromatography with mass selective detection. 2-Amino-4-hydroxy-6-methylpyrimidine and 4-hydroxy-6-trifluoromethylpyrimidine are used as internal standards. The detection limits are 0.5 μg/l (DDHP), 1 μg/l (MDHP) and 4 μg/l (ADHP), respectively. The method was used for analysing seven urine samples collected from workers who had applied pirimicarb. The three metabolites were found in every sample in concentrations up to 60 μg/l.  相似文献   

3.
The method of analysis described permits the determination of 2,4-dinitrobenzoic acid down to the lower μg l−1 range in the urine of persons exposed to dinitrotoluene. 2,4-Dinitrobenzoic acid is the main metabolite of 2,4-dinitrotoluene and technical dinitrotoluene. After acidic hydrolysis, which served to release the conjugated part of the 2,4-dinitrobenzoic acid, the analyte was selectively separated from the urine matrix via various extraction steps and then derivatised to the methyl ester. Quantitative analysis was carried out using capillary gas chromatography and mass selective detection. 3,5-Dinitrobenzoic acid was used as an internal standard. The detection limit was 1 μg l−1 urine. The relative standard deviations of within-series imprecision were between 5 and 6%. The relative recoveries were between 91 and 110% depending on the concentration. The analytical method developed as part of this study was used to investigate a collective consisting of 82 urine samples from persons working in the area of explosives disposal. The concentrations of 2,4-dinitrobenzoic acid determined ranged from the detection limit to 95 μg l−1 urine. The method allowed the quantification of low-level internal exposure to dinitrotoluene.  相似文献   

4.
A gas chromatographic method with nitrogen–phosphorus detection involving a solid–liquid extraction phase was developed and validated for the simultaneous quantification of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) in plasma. A modification of this method was validated for the analysis of MDMA, MDA, 4-hydroxy-3-methoxymethamphetamine (HMMA) and, 4-hydroxy-3-methoxyamphetamine (HMA) in urine. Under the analytical conditions described, the limits of detection in plasma and urine were less than 1.6 μg/l and 47 μg/l, respectively, for all the compounds studied. Good linearity was observed in the concentration range evaluated in plasma (5–400 μg/l) and urine (100–2000 μg/l) for all compounds tested. The recoveries obtained from plasma were 85.1% and 91.6% for MDMA and MDA, respectively. Urine recoveries were higher than 90% for MDMA and MDA, 74% for HMMA, and 64% for HMA. Methods have been successfully used in the assessment of plasma and urine concentrations of MDMA and its main metabolites in samples from clinical studies in healthy volunteers.  相似文献   

5.
A simple and selective procedure for the determination of vinorelbine, a new semi-synthetic vinca alkaloid, is presented. The method is based on ion-exchange high-performance liquid chromatography on normal-phase silica with fluorescence detection, combined with liquid—liquid extraction using diethyl ether for sample clean-up. The absence of endogenous interferences and the excellent chromatographic behaviour of vinca alkaloids provides accurate results even at low concentrations. The limit of determination in plasma is 1.5 μg/l (500-μl sample). Reproducible recoveries in urine were obtained if 10–50 μl of sample were processed supplemented with 500 μl of blank plasma.  相似文献   

6.
A reversed-phase, high-performance liquid chromatographic method using UV detection is described for the assay of the major metabolite of phentolamine in plasma and urine before or after enzymatic hydrolysis. Plasma is deproteinized with methanol. The sensitivity limit is 200 ng/ml using 150-μl samples. Urine is either diluted with water or purified after enzymatic hydrolysis. Concentrations down to 2–3 μg/ml could be quantified with acceptable precision. This method was applied to plasma and urine samples from subjects given phentolamine.  相似文献   

7.
A simple high-performance liquid chromatographic method was developed for the determination of vanillin and its vanillic acid metabolite in human plasma, red blood cells and urine. The mobile phase consisted of aqueous acetic acid (1%, v/v)–acetonitrile (85:15, v/v), pH 2.9 and was used with an octadecylsilane analytical column and ultraviolet absorbance detection. The plasma method demonstrated linearity from 2 to 100 μg/ml and the urine method was linear from 2 to 40 μg/ml. The method had a detection limit of 1 μg/ml for vanillin and vanillic acid using 5 μl of prepared plasma, red blood cells or urine. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of vanillin in patients undergoing treatment for sickle cell anemia.  相似文献   

8.
A high-performance liquid chromatographic method for the determination of picotamide in human plasma and urine is described. After addition of an internal standard (bamifylline), the plasma and urine samples were subjected to liquid—liquid extraction and clean-up procedures. The final extracts were evaporated to dryness and the resulting residues were reconstituted in 100 μl of methanol—water (50:50, v/v) and chromatographed on a LiChrosorb RP-SELECT B reversed-phase column coupled to an ultraviolet detector monitored at 230 nm. Chromatographic analysis takes about 10 min per sample. The assay was linear over a wide range and has a limit of detection of 0.005 and 0.1 μg/ml in plasma and urine, respectively. It was selective for picotamide, accurate and robust and thus suitable for routine assays after therapeutic doses of picotamide.  相似文献   

9.
A high-performance liquid chromatographic (HPLC) method for the simultaneous determination of flumequine and its metabolite 7-hydroxyflumequine in sheep plasma was described. The two compounds were extracted from 100 μl of plasma by liquid–liquid extraction. Aliquots (100 μl) were injected onto the HPLC system and separated on a LiChrospher Select B column with an isocratic system. The compounds were detected by fluorimetric detection for concentrations below 500 μg/l and by UV detection for the concentrations exceeding 500 μg/l. The range of the validated concentrations were 50 000 to 5 μg/l and 500 to 10 μg/l with mean recovery rates of 87±3% and 60±1% for flumequine and 7-hydroxyflumequine, respectively.  相似文献   

10.
Methods for the determination of 3,4-dichloroaniline (3,4-DCA) and 3,5-dichloroaniline (3,5-DCA) as common markers of eight non-persistent pesticides in human urine are presented. 3,5-DCA is a marker for the exposure to the fungicides vinclozolin, procymidone, iprodione, and chlozolinate. Furthermore the herbicides diuron, linuron, neburon, and propanil are covered using their common marker 3,4-DCA. The urine samples were treated by basic hydrolysis to degrade all pesticides, metabolites, and their conjugates containing the intact moieties completely to the corresponding dichloroanilines. After addition of the internal standard 4-chloro-2-methylaniline, simultaneous steam distillation extraction (SDE) followed by liquid–liquid extraction (LLE) was carried out to produce, concentrate and purify the dichloroaniline moieties. Gas chromatography (GC) with mass spectrometric (MS) and tandem mass spectrometric (MS–MS) detection and also detection with an electron-capture detector (ECD) after derivatisation with heptafluorobutyric anhydride (HFBA) were employed for separation, detection, and identification. Limit of detection of the GC–MS–MS and the GC–ECD methods was 0.03 and 0.05 μg/l, respectively. Absolute recoveries obtained from a urine sample spiked with the internal standard, 3,5-, and 3,4-DCA, ranged from 93 to 103% with 9–18% coefficient of variation. The three detection techniques were compared concerning their performance, expenditure and suitability for their application in human biomonitoring studies. The described procedure has been successfully applied for the determination of 3,4- and 3,5-DCA in the urine of non-occupationally exposed volunteers. The 3,4-DCA levels in these urine samples ranged between 0.13 and 0.34 μg/g creatinine or 0.11 and 0.56 μg/l, while those for 3,5-DCA were between 0.39 and 3.33 μg/g creatinine or 0.17 and 1.17 μg/l.  相似文献   

11.
A column-switching method was developed for the determination of total 3-methoxy-4-hydroxy-phenylethyleneglycol (MHPG) in urine. This was performed by first treating samples with β-glucuronidase, followed by extraction with ethyl acetate. The reconstituted extracts with injected onto an HPLC system containing an amperometric detector and tandem Nucleosil C18 and C8 reversed-phase columns connected by a switching valve. The total analysis time for MHPG was 12 min. The limit of detection was 0.18 ng, or 9 μg/l for 20-μl injections of a 1.0-ml reconstituted extract prepared from 1.0 ml of urine. The linear range extended up to 80 mg/l. The within-day precision for a urine sample containing 170 μg/l total MHPG was ±6% and the day-to-day precision was ±15%. The average levels determined by this method for total MHPG in normal subjects showed good agreement with previous literature values. This approach could be modified for the determination of free MHPG by using only ethyl acetate extraction for sample pretreatment.  相似文献   

12.
As a part of a pilot clinical study, a high-performance reversed-phase liquid chromatography analysis was developed to quantify temozolomide in plasma and urine of patients undergoing a chemotherapy cycle with temozolomide. All samples were immediately stabilized with 1 M HCl (1 + 10 of biological sample), frozen and stored at −20°C prior to analysis. The clean-up procedure involved a solid-phase extraction (SPE) of clinical sample (100 μl) on a 100-mg C18-endcapped cartridge. Matrix components were eliminated with 750 μl of 0.5% acetic acid (AcOH). Temozolomide was subsequently eluted with 1250 μl of methanol (MeOH). The resulting eluate was evaporated under nitrogen at RT and reconstituted in 200 μl of 0.5% AcOH and subjected to HPLC analysis on an ODS-column (MeOH-0.5% AcOH, 10:90) with UV detection at 330 nm. The calibration curves were linear over the concentration range 0.4–20 μg/ml and 2–150 μg/ml for plasma and urine, respectively. THe extraction recovery of temozolomide was 86–90% from plasma and 103–105% from urine over the range of concentrations considered. The stability of temozolomide was studied in vitro in buffered solutions at RT, and in plasma and urine at 37°C. An acidic pH (<5–6) shoul be maintained throughout the collection, the processing and the analysis of the sample to preserve the integrity of the drug. The method reported here was validated for use in a clinical study of temozolomide for the treatment of metastatic melanoma and high grade glioma.  相似文献   

13.
A gas chromatographic–mass spectrometric method was developed for the quantitative analysis of the three Di(2-ethylhexyl)phthalate (DEHP) metabolites, 2-ethylhexanoic acid, 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in urine. After oximation with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride and sample clean-up with Chromosorb P filled glass tubes, all three organic acids were converted to their tert.-butyldimethylsilyl derivatives. Quantitation was done with trans-cinnamic acid as internal standard and GC–MS analysis in the selected ion monitoring mode (SIM). Calibration curves for all three acids in the range from 20 to 1000 μg/l showed correlation coefficients from 0.9972 to 0.9986. The relative standard deviation (RSD) values determined in the observed concentration range were between 1.3 and 8.9% for all three acids. Here we report for the first time the identification of 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in human urine next to the known DEHP metabolite 2-ethylhexanoic acid. In 28 urine samples from healthy persons we found all three acids with mean concentrations of 56.1±13.5 μg/l for 2-ethylhexanoic acid, 104.8± 80.6 μg/l for 2-ethyl-3-hydroxyhexanoic acid and 482.2± 389.5 μg/l for 2-ethyl-3-oxohexanoic acid.  相似文献   

14.
A simple purge-and-trap gas chromatographic method with flame ionization detection was developed for the determination of styrene in urine and blood. Styrene present in a 5 ml sample at room temperature was swept by helium at 40 ml/min for 11 min, trapped on a Tenax trap, desorbed by heating, cryofocused, and injected by flash heating into a DB-5 capillary GC column. The oven temperature program was from 80°C, held for 8 min, to 120°C at 5°C/min, and then held for 2 min. The detector temperature was 250°C. The calibration curves were linear in the range of 2.5–15 ppb styrene in urine and 25–150 ppb in blood. The detection limits calculated were 0.4 μg/l in urine and 0.6 μg/l in blood. The coefficients of variations within the day and day-to-day were 3 and 3.1%, respectively, for 2.5 ppb of styrene in urine, and 1 and 1.6% for 25 ppb of styrene in blood. The results obtained from samples taken from workers exposed to styrene were reported.  相似文献   

15.
trans,trans-Muconic acid (1,3-butadiene-1,4-dicarboxylic acid, MA), a minor urinary metabolite of benzene exposure, was determined, after clean-up by solid-phase anion-exchange chromatography, by reversed-phase HPLC on a C18 column (5 × 0.46 cm I.D., 3 μm particle size), using formic acid-tetrahydrofuran-water (14:17:969) as mobile phase and UV detection at 263 nm. The recovery of MA from spiked urine was > 95% in the 50–500 μg/l range; the quantification limit was 6 μg/l; day-to-day precision, at 300 μg/l, C.V. = 9.2%; the run time was less than 10 min. Urinary MA excretion was measured in two spot urine samples of 131 benzene environmentally exposed subjects: midday values obtained in non-smokers (mean±S.D.=77±54 μg/l, N = 82) were statistically different from those of smoerks (169±85 μg/l, N = 30) (P<0.0001); each group showed a statistically significant increase between MA excretion in midday over morning samples. Moreover, in subjects grouped according to tobacco-smoke exposure level, median values of MA were positively associated with and increased with daily smoking habits.  相似文献   

16.
This study investigated the feasibility of applying solid-phase microextraction (SPME) combined with gas chromatography–mass spectrometry to analyze chlorophenols in urine. The SPME experimental procedures to extract chlorophenols in urine were optimized with a polar polyacrylate coated fiber at pH 1, extraction time for 50 min and desorption in GC injector at 290°C for 2 min. The linearity was obtained with a precision below 10% R.S.D. for the studied chlorophenols in a wide range from 0.1 to 100 μg/l. In addition, sample extraction by SPME was used to estimate the detection limits of chlorophenols in urine, with selected ion monitoring of GC–MS operated in the electron impact mode and negative chemical ionization mode. Detection limits were obtained at the low ng/l levels. The application of the methods to the determination of chlorophenols in real samples was tested by analyzing urine samples of sawmill workers. The chlorophenols were found in workers, the urinary concentration ranging from 0.02 μg/l (PCP) to 1.56 μg/l (2,4-DCP) depending on chlorophenols. The results show that trace chlorophenols have been detected with SPME–GC–MS in the workers of sawmill where chlorophenol-containing anti-stain agents had been previously used.  相似文献   

17.
5-S-Cysteinyldopa (5-SCD) in plasma and urine was determined by means of a newly developed method. This method incorporates optimized conditions for blood collection and storage, as well as a new extraction and separation technique, required for the strong oxidation and light sensitive 5-SCD. The new aspects of the method are the following: immediate centrifugation and freezing of the samples after blood collection, fully automatical solid-phase extraction (SPE) with phenylboronic acid (PBA) cartridges and immediate HPLC injection of the eluate, nearly complete exclusion of light and air–oxygen during extraction, constant sample cooling, use of the more suitable internal standard 5-S- -cysteinyldopa and easy, sensitive and selective HPLC conditions (RP18-column with isocratic separation and electrochemical detection). The method has a linear range from 0.25 to 50 μg l−1 and 25 to 5000 μg l−1 for plasma and urine samples, respectively, a limit of detection of 0.17 μg l−1, intra-assay variabilities from 1.7 to 3.6%, inter-assay variabilities from 4.0 to 18.3% and an average relative recovery of 103.5% for plasma and 105.4% for urine samples. In our study the measured 5-SCD concentrations of patients with melanomas at various stages correlated better with their clinical pictures than described in literature up to date. The results were obtained in comparison to patients with other skin tumors and in comparison to healthy control persons.  相似文献   

18.
A selective assay of olanzapine with liquid chromatography atmospheric pressure chemical ionization (LC–APCI–MS, positive ions) is described. The drug and internal standard (ethyl derivative of olanzapine) were isolated from serum using a solid-phase extraction procedure (C18 cartridges). The separation was performed on ODS column in acetonitrile–50 mM ammonium formate buffer, pH 3.0 (25:75). After analysis of mass spectra taken in full scan mode, a selected-ion monitoring detection (SIM) was applied with the following ions: m/z 313 and 256 for olanzapine and m/z 327 and 270 for the internal standard for quantitation. The limit of quantitation was 1 μg/l, the absolute recovery was above 80% at concentration level of 10 to 100 μg/l. The method tested linear in the range from 1 to 1000 μg/l and was applied for therapeutic monitoring of olanzapine in the serum of patients receiving (Zyprexa™) and in one case of olanzapine overdose. Olanzapine in frozen serum samples and in frozen extracts was stable over at least four weeks. The examinations of urine extracts from patients receiving olanzapine revealed peaks of postulated metabolites (glucuronide and N-desmethylolanzapine).  相似文献   

19.
A simple, sensitive and selective method for the determination of budesonide in bronchoalveolar lavage (BAL) using high-performance liquid chromatography (HPLC) with UV detection was developed. BAL samples were extracted twice with methylene chloride, the extracts were centrifuged and the organic laeer separated and dried under nitrogen. The samples were reconstituted in the mobile phase and 80 μl were injected on to a Spherisorb ODS column with UV absorbance detection at 250 nm. The mobile phase was methanol-aqueius buffer (69:31, v/v). Inter-assay coefficients of variation were measured at 7.81 and 500 ng/ml with ranges of 0.89–7.31%. Average recoveries were 97% or greater. This method was successfully implemented for the analysis of BAL from asthmatics, in order to establish the amount of budesonide available to the lung and to investigate the efficacy of inhaler systems. Patients (n = 9) inhaled four puffs of 200 μg of budesonide and BAL was perforned 10 min after the last inhalation. Only four BAL out of the nine presented detectable amounts of budesonide. The concentrations in BAL in these four patients were 13.44–84.18 ng/ml, corresponding to total anounts of 0.847–7.997 μg.  相似文献   

20.
An efficient method for the determination of atenolol in human plasma and urine was developed and validated. α-Hydroxymetoprolol, a compound with a similar polarity to atenolol, was used as the internal standard in the present high-performance liquid chromatographic analysis with fluorescence detection. The assay was validated for the concentration range of 2 to 5000 ng/ml in plasma and 1 to 20 μg.ml in urine. For both plasma and urine, the lower limit of detection was 1 ng/ml. The intra-day and inter-day variabilities for plasma samples at 40 and 900 ng/ml, and urine samples at 9.5 μg/ml were <3% (n=5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号