首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of complexes of low-density lipoproteins (LDL) and different proteoglycan preparations from bovine aorta on LDL degradation and cholesteryl ester accumulation in mouse peritoneal macrophages. Native proteoglycan aggregate containing proteoglycan monomers, hyaluronic acid and link protein was isolated by associative extraction of aortic tissue, while proteoglycan monomer was obtained by dissociative isopycnic centrifugation of the native proteoglycan aggregate. In vitro proteoglycan aggregates were prepared by reaction of the proteoglycan monomer with exogenous hyaluronic acid. 125I-labeled LDL-proteoglycan complexes were formed in the presence of 30 mM Ca2+ and incubated with macrophages. At equivalent uronic acid levels in the proteoglycans the degradation of 125I-labeled LDL contained in the native proteoglycan aggregate complex was 3.7-7.5-fold greater than the degradation of the lipoprotein in the proteoglycan monomer complex. Degradation of 125I-LDL in the in vitro aggregate complex, while higher than that in the monomer complex, was markedly less than that in the native aggregate complex. The larger size and the greater complex-forming ability of the native proteoglycan aggregate might account for the greater capacity of the aggregate to promote LDL degradation in macrophages. The proteoglycan-stimulated degradation of LDL produced a marked increase in cholesteryl ester synthesis and content in macrophages. The LDL-proteoglycan complex was degraded with saturation kinetics, suggesting that these complexes are internalized through high-affinity receptors. Degradation was inhibited by the lysosomotropic agent, chloroquine. Acetyl-LDL, but not native LDL, competitively inhibited the degradation of the 125I-LDL component of the complex. Polyanionic compounds such as polyinosinic acid and fucoidin, while completely blocking the acetyl-LDL-stimulated cholesteryl ester formation, had no effect on the proteoglycan aggregate-stimulated cholesterol esterification. This suggests that LDL-proteoglycan complex and acetyl-LDL are not entering the cells through the same receptor pathway. These results demonstrate that the interaction of LDL with arterial wall proteoglycan aggregates results in marked cholesteryl ester accumulation in macrophages, a process likely to favor foam cell formation. A role for arterial proteoglycans in atherosclerosis is obvious.  相似文献   

2.
Earlier, we (Vijayagopal, P. et al. (1988) Biochim. Biophys. Acta 960, 210) showed that mouse peritoneal macrophages metabolize low density lipoprotein (LDL)-proteoglycan complex by a receptor pathway distinct from the acetyl-LDL receptor. Further studies were conducted to probe further into the mechanism of LDL-proteoglycan complex uptake by macrophages. Both 125I-methyl-LDL-proteoglycan complex and 125I-LDL-proteoglycan complex were taken up and degraded by the cells to the same extent. Similarly, the ability of these ligands to stimulate cholesteryl ester synthesis was also indistinguishable. These results rule out the possibility of apoB,E receptor involvement in the uptake of LDL-proteoglycan complex in macrophages. Sodium fluoride, cytochalasin D and aggregated LDL inhibited degradation of the complex by 24%, 26% and 28%, respectively, indicating that phagocytosis is only a minor pathway for the uptake. Both binding and degradation of the complex were not inhibited by excess hyaluronic acid suggesting that ligand recognition was not through hyaluronic acid binding sites. As compared to acetyl-LDL, the cellular degradation of LDL-proteoglycan complex was retarded. Macrophages exhibited a rapid stimulation of [3H]inositol trisphosphate (IP3) release and diacylglycerol production when incubated with LDL-proteoglycan complex. Furthermore, pertussis toxin produced a 62% inhibition of LDL-proteoglycan complex mediated IP3 release, suggesting that LDL-proteoglycan complex metabolism in macrophages is dependent upon the G-protein coupled signal transduction mechanism. These results show that receptor mediated endocytosis plays a major role in the metabolism of LDL-proteoglycan complex in macrophages.  相似文献   

3.
We studied the factors regulating the metabolism of low-density lipoprotein (LDL)-proteoglycan complex, LDL and acetyl-LDL in mouse peritoneal macrophages. Macrophage conditioned medium stimulated the degradation of LDL-proteoglycan complex and acetyl-LDL in a dose-dependent manner and enhanced cholesteryl ester synthesis mediated by these ligands. The conditioned medium had no such effect in a cell-free system. The conditioned medium enhanced the degradation of both the LDL and proteoglycan components of the complex. The degradation of LDL was not affected by the conditioned medium. The active factor in the conditioned medium was labile to boiling, suggesting that it may be protein in nature. The conditioned medium also lost its stimulatory activity after dialysis through a membrane with an exclusion limit of 25,000 daltons, suggesting the involvement of cytokines and/or other growth factors. Macrophage activation was accompanied by a 2-3-fold increase in the degradation of LDL-proteoglycan complex and acetyl-LDL as compared to the degradation of these ligands in resident macrophages; however, this had no effect on LDL degradation. The degradation of all three ligands increased markedly with decreasing cell density. Preincubation of macrophages for 48 h with increasing concentrations of fetal bovine serum produced a substantial increase in the subsequent degradation of LDL-proteoglycan complex and acetyl-LDL, while it had very little effect on the degradation of LDL. The active factor in serum was destroyed by boiling, suggesting that it may be a protein. These results show that the scavenger receptor, mediating the uptake and degradation of LDL-proteoglycan complex and acetyl-LDL and LDL receptor are regulated differently in mouse peritoneal macrophages.  相似文献   

4.
A high-affinity heparin subfraction accounting for 8% of whole heparin from bovine lung was isolated by low-density lipoprotein (LDL)-affinity chromatography. When compared to whole heparin, the high-affinity subfraction was relatively higher in molecular weight (11,000 vs. 17,000) and contained more iduronyl sulfate as hexuronic acid (76% vs. 86%), N-sulfate ester (0.75 vs. 0.96 mol/mol hexosamine), and O-sulfate ester (1.51 vs. 1.68 mol/mol hexosamine). Although both heparin preparations formed insoluble complexes with LDL quantitatively in the presence of 30 mM Ca2+, the concentrations of NaCl required for 50% reduction in maximal insoluble complex formation was markedly higher with high-affinity subfraction (0.55 M vs. 0.04 M). When compared to complex of 125I-LDL and whole heparin (H-125I-LDL), complex of 125I-LDL and high-affinity heparin subfraction (HAH-125I-LDL) produced marked increase in the degradation of lipoproteins by macrophages (7-fold vs. 1.4-fold over native LDL, after 5 h incubation) as well as cellular cholesteryl ester synthesis (16.7-fold vs. 2.2-fold over native LDL, after 18 h incubation) and content (36-fold vs. 2.7-fold over native LDL, after 48 h incubation). After a 5 h incubation, macrophages accumulated 2.3-fold more cell-associated radioactivity from HAH-125I-LDL complex than from [125I]acetyl-LDL. While unlabeled HAH-LDL complex produced a dose-dependent inhibition of the degradation of labeled complex, native unlabeled LDL did not elicit any effect even at a 20-fold excess concentration. Unlabeled particulate LDL aggregate competed for 33% of degradation of labeled complex; however, cytochalasin D, known inhibitor of phagocytosis, did not effectively inhibit the degradation of labeled complex. Unlabeled acetyl-LDL produced a partial (33%) inhibition of the degradation of labeled complex. These results indicate that (1) the interaction of high-affinity heparin subfraction with LDL leads to scavenger receptor mediated endocytosis of the lipoprotein, and stimulation of cholesteryl ester synthesis and accumulation in the macrophages; and (2) with respect to macrophage recognition and uptake, HAH-LDL complex was similar but not identical to acetyl-LDL. These observations may have implications for atherogenesis, because both mast cells and endothelial cells can synthesize heparin in the arterial wall.  相似文献   

5.
High-density lipoprotein (HDL) cholesteryl esters are taken up by fibroblasts via HDL particle uptake and via selective uptake, i.e., cholesteryl ester uptake independent of HDL particle uptake. In the present study we investigated HDL selective uptake and HDL particle uptake by J774 macrophages. HDL3 (d = 1.125-1.21 g/ml) was labeled with intracellularly trapped tracers: 125I-labeled N-methyltyramine-cellobiose-apo A-I (125I-NMTC-apo A-I) to trace apolipoprotein A-I (apo A-I) and [3H]cholesteryl oleyl ether to trace cholesteryl esters. J774 macrophages, incubated at 37 degrees C in medium containing doubly labeled HDL3, took up 125I-NMTC-apo A-I, indicating HDL3 particle uptake (102.7 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein). Apparent HDL3 uptake according to the uptake of [3H]cholesteryl oleyl ether (470.4 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein) was in significant excess on 125I-NMTC-apo A-I uptake, i.e., J774 macrophages demonstrated selective uptake of HDL3 cholesteryl esters. To investigate regulation of HDL3 uptake, cell cholesterol was modified by preincubation with low-density lipoprotein (LDL) or acetylated LDL (acetyl-LDL). Afterwards, uptake of doubly labeled HDL3, LDL (apo B,E) receptor activity or cholesterol mass were determined. Preincubation with LDL or acetyl-LDL increased cell cholesterol up to approx. 3.5-fold over basal levels. Increased cell cholesterol had no effect on HDL3 particle uptake. In contrast, LDL- and acetyl-LDL-loading decreased selective uptake (apparent uptake 606 vs. 366 ng HDL3 protein/mg cell protein per 4 h in unloaded versus acetyl-LDL-loaded cells at 20 micrograms HDL3 protein/ml). In parallel with decreased selective uptake, specific 125I-LDL degradation was down-regulated. Using heparin as well as excess unlabeled LDL, it was shown that HDL3 uptake is independent of LDL (apo B,E) receptors. In summary, J774 macrophages take up HDL3 particles. In addition, J774 cells also selectively take up HDL3-associated cholesteryl esters. HDL3 selective uptake, but not HDL3 particle uptake, can be regulated.  相似文献   

6.
A lipoprotein particle designated A-LDL, which contains apolipoprotein B (apoB) and which is the size of plasma low density lipoproteins (LDL), was isolated from homogenates of human aortic athersclerotic plaques by a combination of affinity chromatography and gel-filtration. Compared to plasma LDL, A-LDL was more electronegative, its hydrated density was lower and more heterogeneous, and its protein-to-lipid ratio was lower. In addition, apoB in A-LDL was highly degraded, and A-LDL was recognized by mouse peritoneal macrophages (MPM) as indicated by its ability to stimulate cholesterol esterification. Cholesterol esterification was saturable with an apparent Km of 100 micrograms of A-LDL cholesterol/ml. Stimulation of cholesterol esterification was linear with time, leading to extensive accumulation of cholesteryl ester in MPM over a 48-hr time interval. The uptake or degradation of acetyl-LDL (radiolabeled either in the protein with 125I or hydrophobic core with [3H]cholesteryl ether) was markedly decreased by excess unlabeled acetyl-LDL but not by A-LDL, and excess acetyl-LDL did not inhibit the uptake or degradation of labeled A-LDL. However, a 10-fold excess of A-LDL also failed to inhibit the uptake of labeled A-LDL. This finding was consistent with the observation that, unlike the saturable stimulation of cholesterol esterification in MPM induced by A-LDL, the uptake of cholesteryl ether-labeled A-LDL was almost linear over a 0-400 micrograms cholesterol/ml range. This discrepancy between dose response curves for A-LDL, which did not occur for acetyl-LDL, could be eliminated by a 24-hr postincubation period in the absence of lipoprotein, suggesting that A-LDL is catabolized less efficiently than acetyl-LDL following internalization. In summary, we conclude that A-LDL uptake by MPM occurs via a low affinity-high capacity process. Although the uptake of A-LDL is not readily saturated, it is of sufficient affinity to lead to lipid loading of macrophages even when A-LDL is present at relatively low concentrations. If these mechanisms are operative in vivo, they could explain how foam cells in human fatty streak lesions develop.  相似文献   

7.
Cholesteryl ester-loaded macrophages, or foam cells, are a prominent feature of atherosclerotic lesions. Low density lipoprotein (LDL) receptor-mediated endocytosis of native LDL is a relatively poor inducer of macrophage cholesteryl ester accumulation. However, the data herein show that in the presence of a very small amount of sphingomyelinase, LDL receptor-mediated endocytosis of 125I-LDL was enhanced and led to a 2-6-fold increase in 125I-LDL degradation and up to a 10-fold increase in cholesteryl ester accumulation in macrophages. The enhanced lipoprotein uptake and cholesterol esterification was seen after only approximately 12% hydrolysis of LDL phospholipids, was specific for sphingomyelin hydrolysis, and appeared to be related to the formation of fused or aggregated spherical particles up to 100 nm in diameter. Sphingomyelinase-treated LDL was bound by the macrophage LDL receptor. However, when unlabeled acetyl-LDL, a scavenger receptor ligand, was present during or after sphingomyelinase treatment of 125I-LDL, 125I-LDL binding and degradation were enhanced further through the formation of LDL-acetyl-LDL mixed aggregates. Experiments with cytochalasin D suggested that endocytosis, not phagocytosis, was involved in internalization of sphingomyelinase-treated LDL. Nonetheless, the sphingomyelinase effect on LDL uptake was macrophage-specific. These data illustrate that LDL receptor-mediated endocytosis of fused LDL particles can lead to foam cell formation in cultured macrophages. Furthermore, since both LDL and sphingomyelinase are present in atherosclerotic lesions and since some lesion LDL probably is fused or aggregated, there is a possibility that sphingomyelinase-treated LDL is a physiologically important atherogenic lipoprotein.  相似文献   

8.
We assessed the metabolism of low density lipoprotein (LDL) of human monocyte-derived macrophages under hypoxia. The specific binding and association of 125I-labeled LDL (125I-LDL) were not changed under hypoxia compared to normoxia. However, the degradation of 125I-LDL under hypoxia decreased to 60%. The rate of cholesterol esterification under hypoxia was 2-fold greater on incubation with LDL or 25-hydroxycholesterol. The cellular cholesteryl ester content was also greater under hypoxia on incubation with LDL. Secretion of apolipoprotein E into the medium was not altered under hypoxia, suggesting that apolipoprotein E independent cholesterol efflux may be reduced under hypoxia. Thus, hypoxia affects the intracellular metabolism of LDL, stimulates cholesterol esterification, and enhances cholesteryl ester accumulation in macrophages. Hypoxia is one of the important factors modifying the cellular lipid metabolism in arterial wall.  相似文献   

9.
Receptor-mediated incorporations of two modified low density lipoproteins (LDL), acetylated LDL (acetyl-LDL) and oxidized LDL were compared in vitro in mouse peritoneal macrophages by cross-competition experiments. Excess amount of oxidized LDL inhibits the binding of [125I]acetyl-LDL only partially, and excess amount of acetyl-LDL inhibits that of [125I]oxidized LDL also only partially, suggesting that the uptake of the two LDL by macrophages is mediated by partially overlapped yet different mechanisms. Scatchard analysis of [125I]acetyl-LDL binding showed a linear plot and addition of excess amount of oxidized LDL partially displaced the binding sites without changing the affinity, suggesting that there are two classes of receptors with similar affinity; one is specific for acetyl-LDL and the other is common. And the plot of [125I]oxidized LDL binding showed a curvilinear plot and excess amount of acetyl-LDL partially displaced the binding sites of the low affinity, suggesting that there are two classes of binding sites with different affinities and the low affinity one is shared with acetyl-LDL. These results indicate that macrophage receptors for modified LDL consist of at least three receptors, two of which are specific for each LDL and the rest is a common receptor.  相似文献   

10.
We examined the uptake pathway of acetylated low-density lipoprotein and oxidatively modified LDL (oxidized LDL) in human umbilical vein endothelial cells in culture. Proteolytic degradation of 125I-labeled Ac-LDL or Ox-LDL in the confluent monolayer of human endothelial cells was time-dependent and showed saturation kinetics in the dose-response relationship, which suggests that their incorporation is receptor-mediated. Cross-competition studies between acetylated LDL and oxidized LDL showed that the degradation of 125I-labeled acetylated LDL was almost completely inhibited by excess amount of unlabeled acetylated LDL, while only partially inhibited by excess unlabeled oxidized LDL. On the other hand, the degradation of 125I-labeled oxidized LDL was equally inhibited by excess amount of either acetylated or oxidized LDL. Cross-competition results of the cell-association assay paralleled the results shown in the degradation assay. These data indicate that human endothelial cells do not have any additional receptors specific only for oxidized LDL. On the contrary, they may have additional receptors, as we previously indicated on mouse macrophages, which recognize acetylated LDL, but not oxidized LDL.  相似文献   

11.
In previous studies we reported that polymorphonuclear cell (PMN) elastase cleaves apoB-100 of human plasma low density lipoprotein (LDL) into seven or eight large Mr fragments (1, Polacek, D., R.E. Byrne, G.M. Fless, and A.M. Scanu. 1986. J. Biol. Chem. 261: 2057-2063). In the present studies we examined the interaction of native and elastase-digested LDL (ED-LDL) with primary cultures of human monocyte-derived macrophages (HMD-M). For this purpose LDL was digested with purified PMN elastase, re-isolated by ultracentrifugation at d 1.063 g/ml to remove the enzyme, and radiolabeled with 125I. At all LDL concentrations in the medium, the degradation of 125I-labeled ED-LDL was 1.5- to 2.5-fold greater than that of 125I-labeled native LDL, and for both lipoproteins species it was further enhanced by prior incubation of the cells in autologous lipoprotein-deficient serum (ALPDS). ED-LDL incubated with HMD-M in a medium containing [14C]oleate stimulated cholesteryl [14C]oleate formation 2- to 3-fold more than native LDL. In competitive degradation experiments, unlabeled ED-LDL did not inhibit the degradation of 125I-labeled acetylated LDL, whereas it caused a 90% inhibition of the degradation of 125I-labeled native LDL. At 4 degrees C, the binding of both 125I-labeled native and 125I-labeled ED-LDL was specific and of a high affinity. At saturation (Bmax), the binding of 125I-labeled ED-LDL was 2-fold higher (68 ng/mg cell protein) than that of 125I-labeled native LDL (31 ng/mg), with Kd values of 6.5 x 10(-8) M and 2.1 x 10(-8) M, respectively. A possible explanation of the binding data was provided by electrophoretic analyses suggesting that ED-LDL was twice the size of native LDL and thus potentially capable of delivering proportionately more cholesterol to the cells. Taken together, the results indicate that 1) digestion of LDL by purified PMN elastase results in a greater mass of ED-LDL (relative to native LDL) being degraded per unit time by HMD-M; 2) uptake of ED-LDL occurs via the LDL receptor; and 3) LDL digested by PMN elastase undergoes a physical change that may be responsible for its unique interactions with HMD-M. We speculate that if this process were to occur in vivo during an inflammatory process, macrophages could acquire excess cholesterol and be transformed into foam cells which are considered to be precursors of the atherosclerotic process.  相似文献   

12.
Oxidized LDL (Ox-LDL) was shown to be taken up by macrophages via several receptors including the acetyl-LDL(Ac-LDL), the LDL, and the Ox-LDL receptors. Cellular uptake and degradation of Ox-LDL could be dissociated from that of LDL and Ac-LDL as demonstrated by using macrophages that lack the LDL or the Ac-LDL receptors. In J-774 A.1 macrophage-like cell line unlabeled Ox-LDL reduced the 125I-Ox-LDL by up to degradation of 91% whereas unlabeled Ac-LDL and native LDL reduced 125I-Ox-LDL degradation by only 51% and 23%, respectively. Analysis of macrophage degradation of 125I-Ox-LDL in the presence of 30-fold excess concentration of LDL + Ac-LDL (to block uptake of 125I-Ox-LDL via the LDL and the Ac-LDL receptors) revealed that cellular degradation via the Ox-LDL receptor could account for 45% of the macrophage uptake of Ox-LDL.  相似文献   

13.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

14.
The mechanism of hepatic catabolism of human low density lipoproteins (LDL) by human-derived hepatoma cell line HepG2 was studied. The binding of 125I-labeled LDL to HepG2 cells at 4 degrees C was time dependent and inhibited by excess unlabeled LDL. The specific binding was predominant at low concentrations of 125I-labeled LDL (less than 50 micrograms protein/ml), whereas the nonsaturable binding prevailed at higher concentrations of substrate. The cellular uptake and degradation of 125I-labeled LDL were curvilinear functions of substrate concentration. Preincubation of HepG2 cells with unlabeled LDL caused a 56% inhibition in the degradation of 125I-labeled LDL. Reductive methylation of unlabeled LDL abolished its ability to compete with 125I-labeled LDL for uptake and degradation. Chloroquine (50 microM) and colchicine (1 microM) inhibited the degradation of 125I-labeled LDL by 64% and 30%, respectively. The LDL catabolism by HepG2 cells suppressed de novo synthesis of cholesterol and enhanced cholesterol esterification; this stimulation was abolished by chloroquine. When tested at a similar content of apolipoprotein B, very low density lipoproteins (VLDL), LDL and high density lipoproteins (HDL) inhibited the catabolism of 125I-labeled LDL to the same degree, indicating that in HepG2 cells normal LDL are most probably recognized by the receptor via apolipoprotein B. The current study thus demonstrates that the catabolism of human LDL by HepG2 cells proceeds in part through a receptor-mediated mechanism.  相似文献   

15.
Acetylated low-density lipoprotein (acetyl-LDL) stimulated the incorporation of [14C]oleate into cholesteryl [14C]oleate in peritoneal macrophages from both normal and Watanabe heritable hyperlipidemic (WHHL) rabbits. A degradation study showed that macrophages from WHHL rabbits degraded the same amount of 125I-labeled acetyl-LDL as macrophages from normal rabbits. These findings indicate that macrophages of WHHL rabbits have functional acetyl-LDL receptors.  相似文献   

16.
To characterize lipoprotein uptake by macrophages, we studied J774 murine macrophage-derived cells. Uptake of 125I-labeled beta-VLDL and 125I-labeled chylomicron remnants was saturable, specific, and of high affinity. Maximal specific uptake and the concentration at which half-maximal uptake occurred were similar for both beta-VLDL and chylomicron remnants. Specific uptake of 125I-labeled chylomicrons was only 1/5 that of the other two lipoproteins. Cholesterol loading decreased 125I-labeled chylomicron remnant and 125I-labeled beta-VLDL uptake by 25%. Chylomicron remnants and beta-VLDL were equipotent in cross-competition studies; acetyl-LDL did not compete, and human LDL was a poor competitor. Although the amounts of cell-associated lipoproteins were similar, beta-VLDL and chylomicron remnants had different effects on cellular lipid metabolism. beta-VLDL produced a threefold stimulation while chylomicron remnants caused a decrease in [3H]oleate incorporation into cholesteryl ester. beta-VLDL had no effect while chylomicron remnants caused a threefold increase in [3H]oleate incorporation into triacylglycerol. beta-VLDL produced a 44% suppression and chylomicron remnants produced a 78% increase in HMG-CoA reductase activity. In summary, J774 macrophages express a receptor site that recognizes both beta-VLDL and chylomicron remnants; however, these lipoproteins exhibit strikingly different effects on intracellular lipid metabolism.  相似文献   

17.
The mechanism for the regulation of 12-hydroxyeicosatetraenoic acid (12-HETE) production by cholesterol-rich macrophages was investigated. beta-VLDL and acetyl-LDL, lipoproteins which result in cholesterol accumulation in macrophages, stimulated 12-HETE secretion. Lipoproteins which do not induce cholesterol accumulation, such as low- and high-density lipoproteins, did not. Cell-free homogenates from cholesterol-rich macrophages had significantly more 12-lipoxygenase activity than homogenates from unmodified cells. Preincubating homogenates prepared from unmodified macrophages with acetyl-LDL, LDL or multilamellar liposomes containing total lipids from acetyl-LDL but not apoproteins significantly increased 12-lipoxygenase activity. This stimulatory effect was caused by the phospholipid moiety of the lipoprotein. 12-HETE synthesis was not increased in macrophages enriched 6-fold in unesterified cholesterol. Acetyl-LDL stimulated 12-HETE synthesis in macrophages in which cholesteryl ester accumulation was prevented by inhibiting acylcoenzyme A:cholesterol acyltransferase activity. When binding of acetyl-LDL to its receptor was decreased by increasing concentrations of dextran sulfate, or when lysosomal metabolism of the lipoprotein was prevented by chloroquine, 12-HETE production significantly decreased. Moreover, the combination of inhibiting acetyl-LDL binding and degradation completely blocked the stimulation of 12-HETE synthesis by acetyl-LDL. The data indicate that acetyl-LDL must enter the macrophage and be partially degraded to regulate 12-HETE synthesis. The regulation is independent of cholesterol accumulation but is related to the entering lipoprotein phospholipid.  相似文献   

18.
To gain a detailed understanding of those factors that govern the processing of dietary-derived lipoprotein remnants by macrophages we examined the uptake and degradation of rat triacylglycerol-rich chylomicron remnants and rat cholesterol-rich beta-very low density lipoprotein (beta-VLDL) by J774 cells and primary cultures of mouse peritoneal macrophages. The level of cell associated 125I-labeled beta-VLDL and 125I-labeled chylomicron remnants reached a similar equilibrium level within 2 h of incubation at 37 degrees C. However, the degradation of 125I-labeled beta-VLDL was two to three times greater than the degradation of 125I-labeled chylomicron remnants at each time point examined, with rates of degradation of 161.0 +/- 36.0 and 60.1 +/- 6.6 ng degraded/h per mg cell protein, respectively. At similar extracellular concentrations of protein or cholesterol, the relative rate of cholesteryl ester hydrolysis from [3H]cholesteryl oleate/cholesteryl [14C]oleate-labeled chylomicron remnants was one-third to one-half that of similarly labeled beta-VLDL. The reduction in the relative rate of chylomicron remnant degradation by macrophages occurred in the absence of chylomicron remnant-induced alterations in low density lipoprotein (LDL) receptor recycling or in retroendocytosis of either 125I-labeled lipoprotein. The rate of internalization of 125I-labeled beta-VLDL by J774 cells was greater than that of 125I-labeled chylomicron remnants, with initial rates of internalization of 0.21 ng/min per mg cell protein for 125I-labeled chylomicron remnants and 0.39 ng/min per mg cell protein for 125I-labeled beta-VLDL. The degradation of 125I-labeled chylomicron remnants and 125I-labeled beta-VLDL was dependent on lysosomal enzyme activity: preincubation of macrophages with the lysosomotropic agent monensin reduced the degradation of both lipoproteins by greater than 90%. However, the pH-dependent rate of degradation of 125I-labeled chylomicron remnants by lysosomal enzymes isolated from J774 cells was 50% that of 125I-labeled beta-VLDL. The difference in degradation rates was dependent on the ratio of lipoprotein to lysosomal protein used and was greatest at ratios greater than 50. The degradation of 125I-labeled beta-VLDL by isolated lysosomes was reduced 30-40% by preincubation of beta-VLDL with 25-50 micrograms oleic acid/ml, suggesting that released free fatty acids could cause the slower degradation of chylomicron remnants. Thus, differences in the rate of uptake and degradation of remnant lipoproteins of different compositions by macrophages are determined by at least two factors: 1) differences in the rates of lipoprotein internalization and 2) differences in the rate of lysosomal degradation.  相似文献   

19.
The regulation of the hepatic catabolism of normal human very-low-density lipoproteins (VLDL) was studied in human-derived hepatoma cell line HepG2. Concentration-dependent binding, uptake and degradation of 125I-labeled VLDL demonstrated that the hepatic removal of these particles proceeds through both the saturable and non-saturable processes. In the presence of excess unlabeled VLDL, the specific binding of 125-labeled VLDL accounted for 72% of the total binding. The preincubation of cells with unlabeled VLDL had little effect on the expression of receptors, but reductive methylation of VLDL particles reduced their binding capacity. Chloroquine and colchicine inhibited the degradation of 125I-labeled VLDL and increased their accumulation in the cell, indicating the involvement of lysosomes and microtubuli in this process. Receptor-mediated degradation was associated with a slight (13%) reduction in de novo sterol synthesis and had no significant effect on the cellular cholesterol esterification. Competition studies demonstrated the ability of unlabeled VLDL, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) to effectively compete with 125I-labeled VLDL for binding to cells. No correlation was observed between the concentrations of apolipoproteins A-I, A-II, C-I, C-II and C-III of unlabeled lipoproteins and their inhibitory effect on 125I-labeled VLDL binding. When unlabeled VLDL, LDL and HDL were added at equal contents of either apolipoprotein B or apolipoprotein E, their inhibitory effect on the binding and uptake of 125I-labeled VLDL only correlated with apolipoprotein E. Under similar conditions, the ability of unlabeled VLDL, LDL and HDL to compete with 125I-labeled LDL for binding was a direct function of only their apolipoprotein B. These results demonstrate that in HepG2 cells, apolipoprotein E is the main recognition signal for receptor-mediated binding and degradation of VLDL particles, while apolipoprotein B functions as the sole recognition signal for the catabolism of LDL. Furthermore, the lack of any substantial regulation of beta-hydroxy-beta-methylglutaryl-CoA reductase and acyl-CoA:cholesterol acyltransferase activities subsequent to VLDL degradation, in contrast to that observed for LDL catabolism, suggests that, in HepG2 cells, the receptor-mediated removal of VLDL proceeds through processes independent of those involved in LDL catabolism.  相似文献   

20.
Oxidation of low density lipoprotein (LDL) by cells of the arterial wall or in the presence of copper ions was shown to result in the peroxidation of its fatty acids as well as its cholesterol moiety. LDL incubation with cholesterol oxidase (CO) resulted in the conversion of up to 85% of the lipoprotein unesterified cholesterol (cholest-5-en-3-ol) to cholestenone (cholest-4-en-3-one) in a dose- and time-dependent pattern. Plasma very low density lipoprotein (VLDL) and high density lipoprotein (HDL) could be similarly modified by CO. In cholesterol oxidase-modified LDL (CO-LDL), unlike copper ion-induced oxidized LDL (Cu-Ox-LDL), there was no fatty acids peroxidation, and lipoprotein size or charge as well as LDL cholesteryl ester, phospholipids, and triglycerides content were not affected. CO-LDL, however, demonstrated enhanced susceptibility to oxidation by copper ions in comparison to native LDL. Upon incubation of CO-LDL with J-774 A.1 macrophage-like cell line, cellular uptake and degradation of the lipoprotein was increased by up to 62% in comparison to native LDL but was 15% lower than that of Cu-Ox-LDL. Similarly, the binding of CO-LDL to macrophages increased by up to 80%, and cellular cholesterol mass was increased 51% more than the mass obtained with native LDL. Several lines of evidence indicate that CO-LDL was taken up via the LDL receptor: 1) Excess amounts of unlabeled LDL, but not acetyl-LDL (Ac-LDL), effectively competed with 125I-CO-LDL for the uptake by cells. 2) The degradation of CO-LDL by various types of macrophages and by fibroblasts could be dissociated from that of Ac-LDL and was always higher than that of native LDL. 3) A monoclonal antibody to the LDL receptor (IgG-C7) and a monoclonal antibody to the LDL receptor binding domains on apoB-100 (B1B6) inhibited macrophage degradation of CO-LDL. The receptor for Cu-Ox-LDL, which is not shared with Ac-LDL, was also partially involved in macrophage uptake of CO-LDL, since Cu-Ox-LDL demonstrated some competition capability with CO-125I-LDL for its cellular degradation. CO-LDL cellular degradation was inhibited by chloroquine, thus implying lysosomal involvement in the cellular processing of the lipoprotein. Incubation of macrophages with LDL in the presence of increasing concentrations of cholestenone resulted in up to 52% enhanced lipoprotein cellular degradation suggesting that the cholestenone in CO-LDL might be involved in the enhanced cellular uptake of the modified lipoprotein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号