首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we analyzed, for the first time, alterations in phospholipase A2 (PLA2) activity and response to parathyroid hormone (PTH) in rat enterocytes with aging. We found that PTH, rapidly stimulate arachidonic acid (AA) release in rat duodenal cells (+1- to 2-fold), an effect that is greatly potentiated by aging (+4-fold). We also found that hormone-induced AA release in young animals is Ca2+-dependent via cPLA2, while AA released by PTH in cells from aged rats is due to the activation of cPLA2 and the Ca2+-independent PLA2 (iPLA2). In enterocytes from 3 months old rats, PTH induced, in a time and dose-dependent fashion, the phosphorylation of cPLA2 on serine 505, with a maximum at 10 min (+7-fold). Basal levels of cPLA2 serine-phosphorylation were higher in old enterocytes, affecting the hormone response which was greatly diminished (+2-fold at 10 min). cPLA2 phosphorylation impairment in old animals was not related to changes of cPLA2 protein expression and did not explain the substantial increase on PTH-induced AA release with aging, further suggesting the involvement of a different PLA2 isoform. Intracellular Ca2+ chelation (BAPTA-AM, 5 microM) suppressed the serine phosphorylation of cPLA2 in both, young and aged rats, demonstrating that intracellular Ca2+ is required for full activation of cPLA2 in enterocytes stimulated with PTH. Hormone effect on cPLA2 was suppressed to a great extent by the MAP kinases ERK 1 and ERK2 inhibitor, PD 98059 (20 microM), the cAMP antagonist, Rp-cAMP, and the PKC inhibitor Ro31820 both, in young and aged animals. Enterocytes exposure to PTH also resulted in phospho-cPLA2 translocation from cytosol to nuclei and membrane fractions, where phospholipase substrates reside. Hormone-induced enzyme translocation is also modified by aging where, in contrast to young animals, part of phospho-cPLA2 remained cytosolic. Collectively, these data suggest that PTH activates in duodenal cells, a Ca2+-dependent cytosolic PLA2 and attendant AA release and that this activation requires prior stimulation of intracellular ERK1/2, PKA, and PKC. cPLA2 is the major enzyme responsible for AA release in young enterocytes while cPLA2 and the Ca2+-independent iPLA2, potentiate PTH-induced AA release in aged cells. Impairment of PTH activation of PLA2 isoforms upon aging may result in abnormal hormone regulation of membrane fluidity and permeability and thereby affecting intestinal cell membrane function.  相似文献   

2.
In the current study, we have probed the role of cytosolic phospholipase A2 (cPLA2) activity in the cellular response to the calciotropic hormones, 1alpha,25,dihydroxy-vitamin D(3) [1alpha,25(OH)(2)D(3)] and PTH. Stimulation of rat enterocytes with either hormone, increased release of arachidonic acid (AA) 3H-AA] one-two fold in a concentration and time-dependent manner. The effect of either hormone on enterocytes was totally reduced by preincubation with the intracellular Ca(2+) chelator BAPTA-AM (5 microM), suggesting that the release of AA following cell exposure to the calciotropic hormones occurs mainly through a Ca(2+)-dependent mechanism involving activation of Ca(2+)-dependent cPLA2. Calciotropic homone stimulation of rat intestinal cells increases cPLA2 phosphorylation (three to four fold). This effect was decreased by PD 98059 (20 microM), a MAP kinase inhibitor, indicating that this action is, in part, mediated through activation of the MAP kinases ERK 1 and ERK2. Enterocytes exposure to 1alpha,25(OH)(2)D(3) (1nM) or PTH (10 nM) also resulted in P-cPLA2 translocation from cytosol to nuclei and membrane fractions, where phospholipase subtrates reside. Collectively, these data suggest that PTH and 1alpha,25(OH)(2)D(3) activate in duodenal cells, a Ca(2+)-dependent cytosolic PLA2 and attendant arachidonic acid release and that this activation requieres prior stimulation of intracellular ERK1/2. 1alpha,25(OH)(2)D(3) and PTH modulation of cPLA2 activity may change membrane fluidity and permeability and thereby affecting intestinal cell membrane function.  相似文献   

3.
The effect of ceramide on Ca2+-dependent translocation of cytosolic phospholipase A2 (cPLA2) to membranes was studied. Pretreatment of platelets with sphingomyelinase or C6-ceramide (N-hexanoylsphingosine) led to apparent enhancement of Ca2+-ionophore A23187-stimulated arachidonic acid release but did not affect the cytosolic phospholipase A2 (cPLA2) activity. Under these conditions, the cPLA2 proteins in membranes increased significantly, compared with those by A23187 alone. Sphingomyelinase and C6-ceramide, but not C6-dihydroceramide, a control analog of C6-ceramide, also facilitated the Ca2+-dependent increase in the cPLA2 protein, as well as the activity, in membranes induced by addition of Ca2+ into platelet lysate. Protein kinase Calpha, which possesses a Ca2+-dependent lipid binding domain, was increased in membranes in a Ca2+-dependent manner, but the increase was not accelerated by sphingomyelinase or C6-ceramide. These findings suggest that ceramide in membranes potentiates Ca2+-dependent cPLA2 translocation from cytosol to membranes, probably through modification of membrane phospholipid organization.  相似文献   

4.
Zhao HF  Wang X  Zhang GJ 《FEBS letters》2005,579(6):1551-1556
Lysosomal disintegration is a crucial event for living cells, but mechanisms for the event are still unclear. In this study, we established that the cytosolic extracts could enhance lysosomal osmotic sensitivity and osmotically destabilize the lysosomes. The cytosol also caused the lysosomes to become more swollen in the hypotonic sucrose medium. The results indicate that the cytosol induced an osmotic shock to the lysosomes and an influx of water into the organelle. Since the effects of cytosol on the lysosomes could be abolished by O-tricyclo[5.2.1.0(2,6)]dec-9-yl dithiocarbonate potassium salt (D609), a specific inhibitor of cytosolic phospholipase C (PLC), the PLC might play an important role in the lysosomal osmotic destabilization. The activity of cytosolic PLC and the extent of enzyme latency loss of the cytosol-treated lysosomes exhibited a similar biphasic dependence on the cytosolic Ca2+ concentration. In addition, the cytosol did not osmotically destabilize the lysosomes until the cytosolic calcium ions rose above 100 nM. It suggests that the destabilization effect of cytosol on the lysosomes is Ca(2+)-dependent.  相似文献   

5.
We have developed a simple fluorescent assay for detection of phospholipase A2 (PLA2) activity in zebrafish embryos that utilizes a fluorescent phosphatidylcholine substrate. By using this assay in conjunction with selective PLA2 inhibitors and Western blot analysis, we identified the principal activity in zebrafish embryogenesis as characteristic of the Ca2+-dependent cytosolic PLA2 (cPLA2) subtype. Embryonic cPLA2 activity remained constant from the 1-cell stage until the onset of somitogenesis, at which time it increased sharply. This increase was preceded by the expression of a previously identified zebrafish cPLA2 homologue (Nalefski, E., Sultzman, L., Martin, D., Kriz, R., Towler, P., Knopf, J., and Clark, J. (1994) J. Biol. Chem. 269, 18239-18249). By using a quenched BODIPY-labeled phosphatidylcholine that fluoresces only upon cleavage by PLA2, lipase activity was visualized in the cells of living embryos where it localized to perinuclear membranes.  相似文献   

6.
We report the cloning and expression of a cDNA encoding a high molecular weight (85.2 kd) cytosolic phospholipase A2 (cPLA2) that has no detectable sequence homology with the secreted forms of PLA2. We show that cPLA2 selectively cleaves arachidonic acid from natural membrane vesicles and demonstrate that cPLA2 translocates to membrane vesicles in response to physiologically relevant changes in free calcium. Moreover, we demonstrate that an amino-terminal 140 amino acid fragment of cPLA2 translocates to natural membrane vesicles in a Ca(2+)-dependent fashion. Interestingly, we note that this 140 amino acid domain of cPLA2 contains a 45 amino acid region with homology to PKC, p65, GAP, and PLC. We suggest that this homology delineates a Ca(2+)-dependent phospholipid-binding motif, providing a mechanism for the second messenger Ca2+ to translocate and activate cytosolic proteins.  相似文献   

7.
Wang X  Zhao HF  Zhang GJ 《Biochimie》2006,88(7):913-922
Lysosomal disintegration may cause apoptosis, necrosis and some diseases. However, mechanisms for these events are still unclear. In this study, we measured lysosomal beta-hexosaminidase free activity, membrane potential and intralysosomal pH. The results revealed that the cytosolic extracts of rat hepatocytes could increase the lysosomal permeability to both potassium ions and protons, and osmotically destabilize lysosomes via K(+)/H(+) exchange. The effects of cytosol on lysosomes could be completely abolished by D609, which inhibited both phospholipase C and sphingomyelinase, and partly prevented by sphingomyelinase inhibitor Ara-AMP, but not by the inhibitors of PLA(2). Moreover, purified phospholipase C could destabilize the lysosomes while phospholipase A(2) and phospholipase D did not produce such effects. The cytosolic phospholipases hydrolyzed lysosomal membrane phospholipids by 50%, which could be prevented by D609. Disintegration of the cytosol-treated lysosomes biphasically depended on the cytosolic [Ca(2+)]. The cytosol did not disintegrate lysosomes below 100 nM or above 10 muM cytosolic [Ca(2+)], but markedly destabilized lysosomes at about 340 nM [Ca(2+)]. The results suggest that cytosolic phospholipase C and sphingomyelinase may be responsible for the alterations in lysosomal stability by increasing the ion permeability.  相似文献   

8.
In this study, we investigated the mechanism of PLA(2)-induced lysosomal destabilization. Through the measurements of lysosomal beta-hexosaminidase free activity, their membrane potential, the intra-lysosomal pH and the lysosomal latency loss in hypotonic sucrose medium, we established that PLA(2) could increase the lysosomal membrane permeability to both potassium ions and protons. The enzyme could also enhance the organelle osmotic sensitivity. The increases in the lysosomal ion permeability promoted influx of potassium ions into the lysosomes via K(+)/H(+) exchange. The resulted osmotic imbalance across the lysosomal membranes osmotically destabilized the lysosomes. In addition, the enhancement of the lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in the osmotic stress. The results explain how PLA(2) destabilized the lysosomes.  相似文献   

9.
Phospholipase A2 (PLA2) activities were found in the cytosolic fractions of rat brain. Using the gel filtration chromatography, two major peaks of PLA2 activities were demonstrated: PLA2-H (200-500 kDa) and PLA2-L (100 kDa). PLA2-L was active at both neutral and alkaline pH and absolutely required Ca2+ for the activity, while the activity of PLA2-H was detected only at alkaline pH and independent of Ca2+. The activation of PLA2-L by Ca2+ was biphasic; the first observed at 1-100 microM Ca2+ and the second at 10 mM Ca2+. In the reconstitution system of partially purified PLA2-L and synaptosomal membranes from rat brain, PLA2-L associated with the membranes in a Ca2(+)-dependent manner. The association was completed within 5-10 min at 25 degrees C both at 10 microM and 1 mM Ca2+, though amount of PLA2-L translocated was dependent on Ca2+ concentrations. These results suggest that Ca2+ promotes the translocation of the cytosolic PLA2-L to membranes where phospholipids, substrate of PLA2, are present.  相似文献   

10.
Ca2+-regulated exocytosis, previously believed to be restricted to specialized cells, was recently recognized as a ubiquitous process. In mammalian fibroblasts and epithelial cells, exocytic vesicles mobilized by Ca2+ were identified as lysosomes. Here we show that elevation in intracellular cAMP potentiates Ca2+-dependent exocytosis of lysosomes in normal rat kidney fibroblasts. The process can be modulated by the heterotrimeric G proteins Gs and Gi, consistent with activation or inhibition of adenylyl cyclase. Normal rat kidney cell stimulation with isoproterenol, a beta-adrenergic agonist that activates adenylyl cyclase, enhances Ca2+-dependent lysosome exocytosis and cell invasion by Trypanosoma cruzi, a process that involves parasite-induced [Ca2+]i transients and fusion of host cell lysosomes with the plasma membrane. Similarly to what is observed for T. cruzi invasion, the actin cytoskeleton acts as a barrier for Ca2+-induced lysosomal exocytosis. In addition, infective stages of T. cruzi trigger elevation in host cell cAMP levels, whereas no effect is observed with noninfective forms of the parasite. These findings demonstrate that cAMP regulates lysosomal exocytosis triggered by Ca2+ and a parasite/host cell interaction known to involve Ca2+-dependent lysosomal fusion.  相似文献   

11.
It was recently demonstrated that an increase in the cellular cholesterol level leads to vesiculation of the Golgi apparatus. This vesiculation affects the entire Golgi apparatus and is a reversible process. We have now started to elucidate the mechanism behind this cholesterol-induced vesiculation of the Golgi apparatus. Transient transfection of cells with dominant negative mutant constructs of dynamin 1 and 2 inhibited the vesiculation; expression of dynK44A in HeLa cells stably transfected with this construct had the same effect. However, the vesiculation seems to be independent of clathrin, as cholesterol-induced vesiculation still occurred following knock down of clathrin heavy chain in HeLa cells using RNA interference as well as in BHK cells where expression of antisense to clathrin heavy chain had been induced. Importantly, the cPLA2 inhibitor MAFP and the chelator BAPTA-AM that binds cytosolic Ca2+ inhibited the cholesterol-induced vesiculation, suggesting involvement of a cPLA2 that requires cytosolic Ca2+ for translocation to membranes. Furthermore, in response to an increased cellular cholesterol level, an EGFP-cPLA2 fusion protein translocated to the Golgi apparatus. Thus, our results demonstrate that the cholesterol-induced vesiculation of the Golgi apparatus is mediated by a cPLA2- and dynamin-dependent mechanism.  相似文献   

12.
As an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 has been widely used to explain the role of PC-PLC in various signal transduction pathways. This study shows that D609 inhibits group IV cytosolic phospholipase A2 (cPLA2), but neither secretory PLA2 nor a Ca2+ -dependent PLA2. Dixon plot analysis shows a mixed pattern of noncompetitive and uncompetitive inhibition with Ki = 86.25 microM for the cPLA2 purified from bovine spleen. D609 also time- and dose-dependently reduces the release of arachidonic acid from a Ca2+- ionophore A23187-stimulated MDCK cells. In the AA release experiment, IC50 of D609 was approximately 375 microM, suggesting that this reagent may not enter the cells easily. The present study indicates that the inhibitory effects of D609 on various cellular responses may be partially attributable to the inhibition of cPLA2.  相似文献   

13.
Lee D  Won JH  Auh CK  Park YM 《Molecules and cells》2003,16(3):361-367
A cytosolic phospholipase A2 (PLA2) was purified 640-fold from rat liver by sequential anion-exchange chromatography, Ca2+-precipitation/KCl-solubilization, gel filtration chromatography, and affinity chromatography. A single peak of PLA2 activity was eluted at an apparent molecular mass of 197 kDa from a Superdex 200HR gel filtration column. In the presence of Ca2+, the purified enzyme catalyzed the hydrolysis of 81.8 nmol of phosphatidylethanolamine per hour per mg of protein. The apparent Km was 1.83 nM. The enzyme was inhibited by arachidonyl trifluoromethyl ketone (AACOCF3), an inhibitor of cPLA2. However, it was not inhibited by bromoenol lactone (BEL), an inhibitor of iPLA2, and p-bromophenacyl bromide (p-BPB), an inhibitor of sPLA2. These data suggest that the purified enzyme is a novel Ca2+-dependent cytosolic PLA2.  相似文献   

14.
We previously reported that VLDL could transfer phospholipids (PLs) to activated platelets. To identify the metabolic pathway involved in this process, the transfer of radiolabeled PLs from VLDL (200 microM PL) to platelets (2 x 10(8)/ml) was measured after incubations of 1 h at 37 degrees C, with or without thrombin (0.1 U/ml) or LPL (500 ng/ml), in the presence of various inhibitors, including aspirin, a cyclooxygenase inhibitor (300 microM); esculetin, a 12-lipoxygenase inhibitor (20 microM); methyl-arachidonyl-fluorophosphonate (MAFP), a phospholipase A(2) (PLA(2)) inhibitor (100 microM); 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl) ester (BAPTA-AM), a Ca(2+) chelator (20 microM); bromoenol lactone (BEL), a Ca(2+)- independent phospholipase A(2) (iPLA(2)) inhibitor (100 nM); and 1-[6-[[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl-]amino]hexyl]1H-pyrrole-2,5-dione (U73122), a phospholipase C (PLC) inhibitor (20 microM). Aspirin and esculetin had no effect, showing that PL transfer was not dependent upon cyclooxygenase or lipoxygenase pathways. The transfer of PL was inhibited by MAFP, U73122, and BAPTA-AM. Although MAFP inhibited both cytosolic phospholipase A(2) (cPLA(2)) and iPLA(2), only cPLA(2) is a calcium-dependent enzyme. Because calcium mobilization is favored by PLC and inhibited by BAPTA-AM, the transfer of PL from VLDL to platelets appeared to result from a cPLA(2)-dependent process. The inhibition of iPLA(2) by BEL had no effect on PL transfers.  相似文献   

15.
Phospholipase D (PLD) has been implicated in a variety of cellular processes, including inflammation, secretion, and respiratory burst. Two distinct PLD isoforms, designated PLD1 and PLD2, have been cloned; however, the regulatory mechanism for each PLD isoform is not clear. In our present study we investigated how PLD2 activity is regulated in mouse lymphocytic leukemia L1210 cells, which mainly contain PLD2, and in PLD2 -transfected COS-7 cells. Intriguingly, A23187, a calcium ionophore that induces calcium influx, potently stimulates PLD activity in these two cell lines, suggesting that Ca2+ might be implicated in the regulation of the PLD2 activity. In addition to the A23187-induced PLD2 activation, A23187 also increases PLA2-mediated arachidonic acid release, and the A23187-stimulated PLD2 and PLA2 activities could be blocked by pretreatment of the cells with cytosolic calcium-dependent PLA2 (cPLA2) inhibitors, such as arachidonyl trifluoromethyl ketone and methyl arachidonyl fluorophosphonate in these two cell lines. Moreover, the A23187-induced PLD2 and PLA2 activities could be inhibited by cotransfection with antisense cPLA2 oligonucleotide. These results suggest a role for cPLA2 in the regulation of PLD2 activity in vivo. The inhibitory effect of arachidonyl trifluoromethyl ketone on the A23187-induced PLD2 activity could be recovered by addition of exogenous lysophosphatidylcholine. This study is the first to demonstrate that PLD2 activity is up-regulated by Ca2+ influx and that cPLA2 may play a key role in the Ca2+-dependent regulation of PLD2 through generation of lysophosphatidylcholine.  相似文献   

16.
Liu Y  Taylor CW 《FEBS letters》2006,580(17):4114-4120
Arachidonic acid (AA) regulates many aspects of vascular smooth muscle behaviour, but the mechanisms linking receptors to AA release are unclear. In A7r5 vascular smooth muscle cells pre-labelled with (3)H-AA, vasopressin caused a concentration-dependent stimulation of 3H-AA release that required phospholipase C and an increase in cytosolic [Ca2+]. Ca2+ release from intracellular stores and Ca2+ entry via L-type channels or the capacitative Ca2+ entry pathway were each effective to varying degrees. Selective inhibitors of PLA2 inhibited the 3H-AA release evoked by vasopressin, though not the underlying Ca2+ signals, and established that cPLA2 mediates the release of AA. We conclude that in A7r5 cells vasopressin stimulates AA release via a Ca2+-dependent activation of cPLA2.  相似文献   

17.
We examined the mechanisms underlying the activation of group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) contributing to the supply of fatty acids required for the formation of cholesteryl ester in oxidized low-density lipoprotein (oxLDL)-stimulated macrophages. The possible involvement of oxidized lipids was also examined. In [(3)H]arachidonic acid-labeled mouse peritoneal macrophages, oxLDL stimulated the release of arachidonic acid, which was suppressed by methyl arachidonyl fluorophosphonate (MAFP), a cPLA(2)alpha inhibitor. oxLDL induced an increase in PLA(2)alpha levels in the membrane fraction without affecting those in whole cells or the activity in the lysate. Among 13-hydroxyoctadecadienoic acid (13-HODE), 7-ketocholesterol, and 25-hydroxycholesterol, oxidized lipids present in oxLDL particles, only 13-HODE induced the release of arachidonic acid, which was also sensitive to MAFP. Under conditions where addition of Ca(2+) to the cell lysate induced an increase in cPLA(2)alpha protein in the membrane fraction, preincubation with 13-HODE facilitated the Ca(2+)-dependent translocation of cPLA(2)alpha. Furthermore, 13-HODE increased cholesteryl ester formation in the presence of [(3)H]cholesterol. These results suggest that 13-HODE mediates the oxLDL-induced activation of cPLA(2)alpha through an increase in cPLA(2)alpha protein in the membranes, thus contributing, in part, to the supply of fatty acids required for the esterification of cholesterol in macrophages.  相似文献   

18.
T Kambe  M Murakami  I Kudo 《FEBS letters》1999,453(1-2):81-84
By analyzing human embryonic kidney 293 cell transfectants stably overexpressing various types of phospholipase A2 (PLA2), we have shown that polyunsaturated fatty acids (PUFAs) preferentially activate type IIA secretory PLA2 (sPLA2-IIA)-mediated arachidonic acid (AA) release from interleukin-1 (IL-1)-stimulated cells. When 293 cells prelabeled with 13H]AA were incubated with exogenous PUFAs in the presence of IL-1 and serum, there was a significant increase in [3H]AA release (in the order AA > linoleic acid > oleic acid), which was augmented markedly by sPLA2-IIA and modestly by type IV cytosolic PLA2 (cPLA2), but only minimally by type VI Ca2(+)-independent PLA2, overexpression. Transfection of cPLA2 into sPLA2-IIA-expressing cells produced a synergistic increase in IL-1-dependent [3H]AA release and subsequent prostaglandin production. Our results support the proposal that prior production of AA by cPLA2 in cytokine-stimulated cells destabilizes the cellular membranes, thereby rendering them more susceptible to subsequent hydrolysis by sPLA2-IIA.  相似文献   

19.
We examined brain phospholipase A2 (PLA2) activity and the expression of enzymes metabolizing arachidonic acid (AA) in cytosolic PLA2 knockout () mice to see if other brain PLA2 can compensate for the absence of cPLA2 alpha and if cPLA2 couples with specific downstream enzymes in the eicosanoid biosynthetic pathway. We found that the rate of formation of prostaglandin E2 (PGE2), an index of net cyclooxygenase (COX) activity, was decreased by 62% in the compared with the control mouse brain. The decrease was accompanied by a 50-60% decrease in mRNA and protein levels of COX-2, but no change in these levels in COX-1 or in PGE synthase. Brain 5-lipoxygenase (5-LO) and cytochrome P450 epoxygenase (cyp2C11) protein levels were also unaltered. Total and Ca2+-dependent PLA2 activities did not differ significantly between and control mice, and protein levels of type VI iPLA2 and type V sPLA2, normalized to actin, were unchanged. These results show that type V sPLA2 and type VI iPLA2 do not compensate for the loss of brain cPLA2 alpha, and that this loss has significant downstream effects on COX-2 expression and PGE2 formation, sparing other AA oxidative enzymes. This suggests that cPLA2 is critical for COX-2-derived eicosanoid production in mouse brain.  相似文献   

20.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of liver cancer cell lines requires death receptor-5 (DR5)-dependent permeabilization of lysosomal membranes. Ligated DR5 triggers recruitment of the proapoptotic proteins Bim and Bax to lysosomes, releasing cathepsin B into the cytosol where it mediates mitochondria membrane permeabilization and activation of executioner caspases. Despite the requirement for lysosome membrane permeabilization during TRAIL-induced apoptosis, little is known about the mechanism that controls recruitment of Bim and Bax to lysosomal membranes. Here we report that TRAIL induces recruitment of the multifunctional sorting protein phosphofurin acidic cluster sorting protein-2 (PACS-2) to DR5-positive endosomes in Huh-7 cells where it forms an immunoprecipitatable complex with Bim and Bax on lysosomal membranes. shRNA-targeted knockdown of PACS-2 prevents recruitment of Bim or Bax to lysosomes, blunting the TRAIL-induced lysosome membrane permeabilization. Consistent with the reduced lysosome membrane permeabilization, shRNA knockdown of PACS-2 in Huh-7 cells reduced TRAIL-induced apoptosis and increased clonogenic cell survival. The determination that recombinant PACS-2 bound Bim but not Bax in vitro and that shRNA knockdown of Bim blocked Bax recruitment to lysosomes suggests that TRAIL/DR5 triggers endosomal PACS-2 to recruit Bim and Bax to lysosomes to release cathepsin B and induce apoptosis. Together, these findings provide insight into the lysosomal pathway of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号