首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
van Dam PS 《Hormone research》2005,64(Z3):109-114
The clinical condition of growth hormone deficiency (GHD) as a consequence of pituitary or hypothalamic disease has been associated with reduced cognitive performance. In several studies, neuropsychological assessment has been performed in adults with GHD both before and after growth hormone (GH) replacement therapy. Interpretation of the available data is complicated by the variation in patient selection as well as the neuropsychological tests used in such studies. Most of the available studies indicate that GHD can lead to small, but clinically relevant changes in memory, processing speed and attention. Some of these changes may be reversed by GH replacement, although the number of reliable intervention studies is limited. In addition to the possible clinical relevance of neuropsychological improvement following GH replacement in patients with GHD, the observed findings may be of interest for studies in neurocognitive performance in other conditions associated with changes in the activity of the somatotrophic axis, and in the understanding of underlying pathophysiological mechanisms.  相似文献   

2.
《Endocrine practice》2012,18(2):209-218
ObjectiveTo compare the response in quality of life (QoL) to growth hormone (GH) replacement in women with GH deficiency (GHD) and a history of acromegaly with that in women with GHD of other causes.MethodsFifty-five women with GHD were studied: 17 with prior acromegaly and 38 with other causes of GHD. We compared two 6-month, randomized, placebo controlled studies of GH therapy in women with hypopituitarism conducted with use of the same design—one in women with a history of acromegaly and one in women with no prior acromegaly. QoL was assessed with the following questionnaires: the QoL-Assessment of Growth Hormone Deficiency in Adults (AGHDA), the Symptom Questionnaire, and the 36-Item Short-Form Health Survey (SF-36).ResultsThe 2 groups had comparable mean pretreatment age, body mass index, and QoL scores and comparable mean GH dose at 6 months (0.61 ± 0.30 versus 0.67 ± 0.27 mg daily). After 6 months of GH replacement therapy, women with GHD and prior acromegaly demonstrated a greater improvement in AGHDA score, four SF-36 subscales (Role Limitations due to Physical Health, Energy or Fatigue, Emotional Well-Being, and Social Functioning), and the Somatic Symptoms subscale of the Symptom Questionnaire than did women with GHD of other causes. Poorer pretreatment QoL was associated with a greater improvement in QoL after administration of GH.ConclusionIn this study, GH replacement therapy improved QoL in women with GHD and a history of acromegaly but not in women with GHD due to other hypothalamic and pituitary disorders. Further studies are needed to determine the long-term risks versus benefits of GH replacement in patients who develop GHD after definitive treatment for acromegaly. (Endocr Pract. 2012;18:209-218)  相似文献   

3.
OBJECTIVE: We tested the impact of commencement of GH replacement therapy in GH-deficient (GHD) adults on the circulating levels of other anterior pituitary and peripheral hormones and the need for re-evaluation of other hormone replacement therapies, especially the need for dose changes. METHODS: 22 GHD patients were investigated in a double-blind randomized study and 90 GHD patients in an open study at baseline and after 6 and 12 months of GH replacement therapy. RESULTS: In the placebo-controlled trial, the FT(3) levels increased after 6 months in the GH-treated group, and in the open study the FT(3) levels tended to increase. Other hormone concentrations did not change in either part of the study. Four patients required an increase in thyroxine dose, while 2 patients needed dose reduction. One originally euthyroid patient required thyroxine replacement. Two patients with originally conserved pituitary-adrenal function developed ACTH insufficiency. The hydrocortisone dose was increased in 1 and decreased in 1 of the 66 patients with secondary hypocortisolism. None of the females required any adjustment of sex hormone replacement therapy. Two of 37 males needed dose increase of testosterone, while 1 needed dose reduction. CONCLUSION: GH replacement therapy required dose adjustments regarding other hormone replacement therapies in 12.2% (n = 11), while initiation of new hormone replacement was performed in 3.3% (n = 3) of the 90 patients during the 1-year follow-up. Monitoring of pituitary hormone axes is advisable after commencement of GH replacement therapy, since changes of hormone replacement therapy was observed in a small but clinically significant number of patients.  相似文献   

4.
BACKGROUND: A stepwise increment of the GH dose is an approach aimed at avoiding adverse events. We investigated GH sensitivity by studying IGF-I and IGFBP-3 concentrations during the initial phase of GH treatment. METHODS: Our investigation was part of the regular follow-up of prepubertal children with GH deficiency (GHD) (n = 31) and small for gestational age (SGA) (n = 23). Dosage was increased in three steps: one-third at the start, two-thirds after 14 days, and the full dose after 28 days (full dose: GHD = 28 microg/kg body weight (BW)/day; SGA = 60 microg/kg BW/day). Blood samples were taken on days 0, 14 and 28, as well as in conjunction with anthropometrical examinations after 3, 6 and 12 months. IGF-I and IGFBP-3 were measured by means of published in-house RIAs and age-related references were used to calculate standard deviation scores (SDS). Height velocity (cm/year) and Delta HT SDS were taken as growth response parameters. RESULTS: Before GH treatment (GHD vs. SGA; median and p values): age (years) (6.6 vs. 6.0; n.s.), HT SDS (-2.6 vs. -3.2; p < 0.05); GH amount after stepping up (mug/kg BW/day) (28 vs. 60; p < 0.01); BW SDS (-0.5 vs. -2.9; p < 0.01); max. GH stimulated (microg/l) (5.6 vs. 10.8; p < 0.01); IGF-I SDS (-3.5 vs. -1.8; p < 0.01); IGFBP-3 SDS (-2.0 vs. 0.8; p < 0.01). After 1 year of GH therapy: HT velocity (cm/year) (9.8 vs. 9.6; n.s.), Delta HT SDS (0.9 vs. 0.9; n.s.); WT velocity (kg/year) (3.3 vs. 3.5; n.s.). Our results show that changes in growth similar to GHD could be induced in SGA by a dosage that was twice as high as the replacement dose given in GHD. GH dose and HT velocity did not correlate in both groups. IGF-I and IGFBP-3 increased as follows in GHD and SGA during stepping up of the dosage (ng/ml, GHD vs. SGA): at start, 54 vs. 89; at day 14, 78 vs. 132; at day 28, 90 vs. 167; at 3 months, 118 vs. 218. There was the same relationship between dose levels and absolute IGF-I concentrations in both groups. In terms of IGF-I SDS, the dose-response curve in SGA showed a shift to the right in comparison to GHD, thus indicating lower sensitivity to GH. The dynamics of IGF-I and IGFBP-3 differed, as IGFBP-3 peaked earlier (on day 28). In GHD, IGF-I SDS at 3 months was -0.7 vs. +0.9 in SGA. Near-identical levels were found for Delta IGF-I SDS and IGFBP-3 SDS above basal levels for each time-point investigated. First year HT velocity in GHD correlated negatively with basal IGF-I SDS (R(2) = 0.33; p <0.001) and basal IGFBP-3 (R(2) = 0.17; p <0.05) but did not correlate with the IGF-I increment during the 0- to 3-month period. Conversely, first year HT velocity correlated (+) in SGA with the IGF SDS increment during the 0- to 3-month period (R(2) = 0.26; p = <0.05). Height velocity in SGA, however, correlated neither with basal IGF-I and IGFBP-3 nor with the 0- to 3-month increments of IGFBP-3 SDS. CONCLUSIONS: IGFs increase during initial GH therapy, thus raising questions about short-term IGF generation tests. (I) In terms of IGF generation, substantially lower sensitivity to GH was observable in SGA. (II) Higher GH sensitivity during first year catch-up growth is associated with GHD, but in SGA it is attributable to increases in IGF. A wider range of GH dosages needs to be explored in order to gain further insight into the relationship between GH dose, IGF levels, and growth. Monitoring IGFs is a practical means for exploring GH sensitivity during dosage stepping up.  相似文献   

5.
Juul A 《Hormone research》1999,51(Z3):141-148
Insulin-like growth factor (IGF)-I has proven to be important in the diagnosis of childhood-onset growth hormone (GH) deficiency (GHD). However, the variability of IGF-I should be taken into account before it can be used in a clinical setting. GH replacement therapy in GHD patients increases IGF-I into the normal range, although there is a large variation. Excessively high (supranormal) GH-induced IGF-I levels are associated with increased prevalence of side effects in adults with GHD. Consequently, at most centres, GH doses are titrated according to IGF-I levels in GHD adults. Whether or not this should also be done in children has not been established. Due to the known variability of IGF-I, individual changes in IGF-I must exceed approximately 35% to be sufficiently significant to warrant a dose adjustment. Novel epidemiological studies have suggested that higher IGF-I levels are associated with an increased risk of prostate, breast and colorectal cancer compared with lower IGF-I levels in otherwise healthy subjects. Consequently, life-time exposure to IGF-I should be considered in all patients treated with GH, and IGF-I should preferably be kept within normal age-related ranges in children as well as in adults.  相似文献   

6.
Growth hormone (GH) has a positive impact on muscle mass, growth and bone formation. It is known to interact with the bone-forming unit, with well-documented increases in markers of bone formation and bone resorption within weeks of the start of GH therapy. These changes relate significantly to short-term growth rate, but it is not evident that they predict long-term response to GH therapy. The consequences of GH deficiency (GHD) and GH replacement therapy on bone mineral density (BMD) have been difficult to interpret in children because of the dependency of areal BMD on height and weight. Some studies have tried to overcome this problem by calculating volumetric BMD, but results are conflicting. The attainment of a normal peak bone mass in an individual is considered important for the future prevention of osteoporosis. From the limited data available, it appears difficult to normalize bone mass totally in GH-deficient individuals, despite GH treatment for long periods. Studies to date examining the interaction between GH and bone have included only small numbers of individuals, making it difficult to interpret the study findings. It is hoped that these issues can be clarified in future research by the direct measurement of bone density (using quantitative computer tomography). Mineralization is only one facet of bone strength, however; other important components (e.g. bone structure and geometry) should be addressed in future paediatric studies. Future studies could also address the importance of the degree of GHD in childhood; how GH dose and insulin-like growth factor-I levels achieved during therapy relate to the final outcome; whether or not the continuation of GH therapy after the attainment of final height may further enhance bone mass; whether the timing and dose of other treatments (e.g. sex hormone replacement therapy) are critical to the outcome; and whether GHD in childhood is associated with an increased risk of fracture.  相似文献   

7.
The concept of partial growth hormone (GH) deficiency (GHD) is well established within the paediatric setting having been validated against height velocity. In hypopituitary adults, GHD is defined by a peak GH response <3 microg/l to stimulation. This cut-off is arbitrary due to the lack of a biological marker equivalent of height velocity. The majority of normal adults achieve peak GH levels several fold higher than this cut off during stimulation. It can be argued, therefore, that there is a cohort of hypopituitary adults with intermediate peak GH values (3-7 microg/l), who have relatively impaired GH secretion, and for whom the impact of this partial GHD (GH insufficiency, GHI) on biological endpoints is not known. Studies of GHI adults have demonstrated an abnormal body composition, adverse lipid profile, impaired cardiac performance, reduced exercise tolerance and insulin resistance. The severity of these abnormalities lies between GHD adults and normal subjects. Whether these anomalies translate into increased mortality, as observed in GHD hypopituitary adults, is not yet known. Given the presence of similar sequelae in GHI and GHD adults, and the improvements during GH replacement in GHD adults, a randomized placebo-controlled study of GH replacement in GHI patients is warranted.  相似文献   

8.
In healthy adults insulin-like growth factor (IGF)-I levels do not differ between males and females, whereas spontaneous growth hormone (GH) secretion is approximately twofold higher in females. Untreated GH-deficient (GHD) women exhibit lower IGF-I levels compared with men and the increase in serum IGF-I during GH replacement is also significantly less. These data suggest a resistance to GH in women, which in healthy subjects is compensated for by increased GH secretion. Administration of oral oestrogen in healthy postmenopausal women suppresses hepatic IGF-I production and increases pituitary GH release, and oral oestrogen replacement in women with GHD lowers IGF-I concentrations and increases the amount of GH necessary to achieve IGF-I target levels during treatment. These data clearly suggest that hepatic suppression of IGF-I production by oestrogen subserves the gender difference in GH sensitivity, but it is also likely that sex steroids may interact with the GH/IGF axis at other levels. There is also circumstantial evidence to indicate that testosterone stimulates IGF-I production and it is speculated that a certain threshold level of androgens is essential to ensure hepatic IGF-I production. Whether these data should translate into earlier discontinuation of oestrogen replacement therapy in women with hypopituitarism merits consideration.  相似文献   

9.
The insulin-like growth factor I (IGF-I) generation test has the potential to assess the ability of an individual to respond to an acute bolus of growth hormone (GH), in terms of IGF-I, IGF-binding protein 3 and acid-labile subunit responses. This article will discuss something of the history of the IGF-I generation test, and review some of the major studies to date. The IGF-I generation test was first used in adults by Lieberman et al., who studied the effects of ageing and oestrogen administration, and suggested that decreased responsiveness to GH occurs with increasing age and oral oestrogen administration. Our results, however, show that, while activity of the GH/IGF-I axis declines with age, peripheral responsiveness to GH is not affected. As in the Lieberman study, we found that oral oestrogen replacement reduces responses of GH-dependent peptides to GH stimulation in healthy post-menopausal women. Transdermal oestrogen administration also reduced responsiveness to GH, although to a lesser degree than orally administered oestrogen. In addition, utilizing a non-weight-based dose of GH we have demonstrated that obese individuals produce greater increases in IGF-I following an acute bolus of GH. In GH deficiency (GHD), data suggesting enhanced peripheral responsiveness should be interpreted with caution, and with awareness of differences between these groups in terms of age and obesity. The IGF-I generation test may allow a fresh approach to unanswered questions in the field of GHD, but as the IGF-I response to GH is not strictly associated with protein anabolism or clinical benefit, the question remains whether this test will predict the effect of longer-term GH administration.  相似文献   

10.

Background  

The broad range in growth observed in short prepubertal children receiving the same growth hormone (GH) dose is due to individual variation in GH responsiveness. This study used a pharmaco-proteomic approach in order to identify novel biomarkers that discriminate between short non-GH-deficient (GHD) children who show a good or poor growth response to GH treatment.  相似文献   

11.
Data collected from 102 neurofibromatosis (NF) children with growth hormone (GH) deficiency (GHD) who were receiving GH replacement therapy were reviewed to assess the efficacy and safety of GH therapy in this condition. GH was administered at a mean dose of 0. 18 mg/kg/week. During the 1st year the median height velocity increased significantly from 4.2 cm/year before treatment to 7.1 cm/year, and the median height standard deviation score increased from -2.4 to -1.9. The response to therapy, however, was not as good as that observed in patients with idiopathic GHD. GH therapy did not influence the progression of any of the features of NF, including intracranial tumours, and was not associated with an excess of other adverse events. We conclude that GH treatment of NF patients with GHD is beneficial in terms of improved growth rate and is well tolerated.  相似文献   

12.
Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle.  相似文献   

13.
Growth hormone (GH) exerts important influences on bone metabolism during lifespan. During childhood, GH is a major determinant of acquisition of bone mass and in adult life, GH partly determines the rate of bone remodelling and therefore influences maintenance of bone mineral density (BMD). Insights into the importance of GH in these respects may be obtained by studies of BMD and indices of bone remodelling in GH deficiency (GHD) of adult-onset and childhood-onset. Adult-onset GHD, usually accompanied by other features of hypopituitarism, may be associated with osteopenia and an increased fracture risk. Postulated mechanisms include GHD and gonadal steroid deficiency of unknown duration; glucocorticoid and thyroxine replacement do not appear to exert a major role. GH replacement in adult-onset GHD results in an early increment in indices of bone remodelling which persists for up to 5 years; BMD increases by 0.5-1.0 SD in males and stabilizes in females over this time period. In adolescents with GHD who traditionally discontinue GH at completion of linear growth, BMD is substantially lower than peak bone mass for a young adult population. Studies addressing the effects of continuation of GH after achievement of final height are currently underway and will provide insights into the possible need to continue GH into adult life. Such studies may confirm a role for GH in promoting continued accrual of bone mass and thereby demonstrate that cessation of GH at achievement of final height, by limiting peak bone mass, may predispose to clinically significant osteoporosis in later life. In addition to the potential importance of GH for achievement of peak bone mass, there may be a superimposed accelerated loss of BMD with advancing age similar to the situation observed in adult-onset GHD. To date, this has been difficult to assess in adult GHD of childhood-onset because the relative contributions of low peak bone mass and increased loss of bone in later life could not be distinguished.  相似文献   

14.
Shalet S 《Hormone research》2006,65(Z2):17-22
The development of osteoporosis, with its attendant risk of fragility fracture, is in part related to the peak bone mass (PBM) achieved in early adulthood. Adolescence is a critical time for the acquisition of bone mass, with around 40% of skeletal mass being accrued during pubertal maturation. Growth hormone (GH) plays an integral role in the achievement of PBM after completion of linear growth, and several recent studies have suggested that GH replacement should continue in individuals with childhood-onset GHD until PBM has been attained - irrespective of the height achieved. In those with severe GHD after growth and pubertal development are complete, a seamless transition of GH therapy into adult life may be preferable to allowing a gap in GH treatment. The 'window of opportunity' concept for achieving PBM will, nevertheless, continue to be challenged by GHD teenagers who may resent the seamless continuation of GH replacement beyond adolescence. Preparation for this possibility should therefore begin during childhood, with all GHD teenagers being encouraged to remain on GH therapy until at least their mid-20s.  相似文献   

15.
Severe growth hormone (GH) deficiency (GHD) induces a well-defined clinical entity encompassing, amongst the most reported features, abnormalities of body composition, in particular increased fat mass, especially truncal, and reduced lean body mass. The results from virtually all treatment studies are in agreement that GH replacement improves the body composition profile of GHD patients by increasing lean body mass and reducing fat mass. More recently, the observations have been extended to adults with partial GHD, defined by a peak GH response to insulin-induced hypoglycaemia of 3-7 microg/l. These patients exhibit abnormalities of body composition similar in nature to those described in adults with severe GHD; these include an increase in total fat mass of around 3.5 kg and a reduction of lean body mass of around 5.5 kg. The increase in fat mass is predominantly distributed within the trunk. The degree of abnormality of body composition is intermediate between that of healthy subjects and that of adults with GHD. The impact of GH replacement on body composition in adults with GH insufficiency, although predictable, has not been formally documented. The skeleton is another biological endpoint affected by GH status: in adults with severe GHD, low bone mass has been reported using dual energy x-ray absorptiometry (DEXA) and other quantitative methodologies. The importance of low bone mass, in any clinical setting, is as a surrogate marker for the future risk of fracture. Several retrospective studies have documented an increased prevalence of fractures in untreated GHD adults. Hypopituitary adults with severe GHD have reduced markers of bone turnover which normalize with GH replacement, indicating that GH, directly or via induction of insulin-like growth factor-I, is intimately involved in skeletal modelling. Whilst the evidence that GH plays an important role in the acquisition of bone mass during adolescence and early adult life is impressive, the impact of GHD acquired later in adulthood is less clear. Recently we examined the relationship between bone mineral density (BMD) and age in 125 untreated adults with severe GHD using DEXA. A significant positive correlation was observed between BMD (z-scores) and age at all skeletal sites studied. Overall, few patients, except those aged less than 30 years, had significantly reduced bone mass (i.e. a BMD z-score of less than -2); correction of BMD to provide a pseudo-volumetric measure of BMD suggested that reduced stature of the younger patients may explain, at least in part, this higher frequency of subnormal BMD z-scores. Despite normal BMD, however, an increase in fracture prevalence may still be observed in elderly GHD adults as a consequence of increased falls related to muscle weakness and visual field defects.  相似文献   

16.
BACKGROUND/AIMS: The aim of the present study was to investigate whether short children with normal growth hormone (GH) immunoreactivity, but reduced bioactivity (bioinactive GH) could benefit from rhGH treatment as GH deficient (GHD) patients. Methods: We evaluated 12 pre-pubertal children (8 M, 4 F), with GH deficiency-like phenotype showing normal serum GH peak levels (>10 ng/ml), measured by immunofluorimetric assay (IFMA-GH), in contrast with a reduced GH bioactivity (bio-GH), evaluated using the Nb(2) cells. We also evaluated 15 age-matched GHD pre-pubertal children (11 M, 4 F) with serum GH peak <5 ng/ml. Both groups were treated with rhGH therapy at the dose of 0.23 mg/kg/week s.c. RESULTS: Serum bio-GH/IFMA-GH ratio at peak time for each patient during the provocative test was significantly lower in bioinactive GH than in GHD children (0.29 vs. 2.05, p = 0.00001). Recombinant human GH therapy induced a significant (p < 0.001) increase in growth rate in both groups during the first 2 years. In the third year of treatment, while growth rate in GHD children is maintained, in bioinactive GH patients it decreases remaining, however higher compared to the pre-treatment one. CONCLUSIONS: Short rhGH therapy given to selected bioinactive GH children improve growth rate and might result in greater final adult height.  相似文献   

17.
INTRODUCTION: Oral clonidine is one of the most frequent drugs used for the diagnosis of growth hormone deficiency (GHD), but the duration of the test, depending on which European centres use it, is not uniform and can vary from 120 to 150 min or even 180 min. SUBJECTS AND METHODS: To standardize this test, evaluating the possibility to shorten it to 90 min, we investigated the response of GH to the oral clonidine test in 291 children evaluated for short stature (height <-2 SD). Of these, 164 were diagnosed as idiopathic short stature (ISS) and 127 as GHD. In these patients, we calculated: (1) the frequency distribution of the GH peaks to clonidine in GHD and in ISS at various times; (2) the percentage of GH peaks to clonidine before and after 90 min in all and in ISS children; (3) the percentage of the first GH value >or=10 ng/ml before 90 min and after 90 min in ISS. RESULTS: GH peak distribution varied between 30 and 180 min, even though the vast majority of peaks occurred between 30 and 60 min. There was no significant difference (p > 0.05) in the peak distribution between ISS and GHD children. The percentages of GH peaks within 90 min were 92.1% in all children and 95.7% in ISS. If considering the first value of GH >or=10 ng/ml this last percentage reaches 96.3%. CONCLUSION: Our study suggests that the oral clonidine test can be administered for only 90 min without significantly changing its validity. This test should be standardized at 90 min in European protocols just as in those currently used in the USA in order to reduce the discomfort of patients and the cost of this diagnostic procedure.  相似文献   

18.

BACKGROUND:

Empty sella (ES) may be associated with variable clinical conditions ranging from the occasional discovery of a clinically asymptomatic pouch within the sella turcica to severe intracranial hypertension and rhinorrhea. The need for replacement hormone therapy in ES, as in other syndromes that may cause hypopituitarism, must be assessed for every single hormone, including growth hormone (GH).

AIM:

To determine whether or not the presence of ES could allow some changes in the GH responses of the isolated growth hormone deficiency (GHD) patients.

MATERIALS AND METHODS:

We included a cohort of 59 short stature children and adolescents with isolated GHD. According to computed tomography finding, they were classified into 2 groups: Group 1 included 40 children with normal sella and 19 children with ES in Group 2. All patients received recombinant human growth hormone (rhGH) with a standard dose of 20 IU/m2/week.

RESULTS:

The baseline results were not significantly different for all variables except weight standard deviation was smaller with statistical significant difference (P = 0.02). We identified no significant differences when comparing both groups, except for height standard deviation (HTSD) after the first year of therapy which revealed significant difference in favor of group 1. When comparing pre- and the two post-treatments HTSD results of the studied cases, all showed significant changes after GH therapy. The results of related variables pre-and post-treatment in both the groups showed significant improvement in all variables of the two groups of the study.

CONCLUSION:

Our study showed a similar stature outcome in the two treatment groups.  相似文献   

19.
BACKGROUND: The present survey among members of the ESPE on current practice in diagnosis and treatment of growth hormone (GH) deficiency (GHD) is of great clinical relevance and importance in the light of the recently published guidelines for diagnosis and treatment of GHD by the Growth Hormone Research Society. We have found much conformity but also numerous discrepancies between the recommendations of the Growth Hormone Research Society and the current practice in Europe. RESULTS: We found that 80% of the pediatric endocrinologists included insulin-like growth factor I (IGF-I) in their initial evaluation of a short child suspected of having GHD, whereas only 22% used GH provocative testing alone in the initial evaluation of a short child. Sixty-eight percent confirmed the diagnosis of GHD using two separate provocative tests. In the present survey cutoff values for GH provocative testing clustered around two values; 10 ng/ml and 20 mU/l. Interestingly, these two values, differing by a factor of 2, were also the most prevalent cutoff values among those who reported their assay to be calibrated against the WHO International Reference Preparation 80/505 where the conversion factor between milligrams and milliunits is 2.6. This suggests that the selection of cutoff values is based on tradition rather than on specific GH assay characteristics. In addition, only 63% of the respondents actually knew what GH assay they were using, and only 57% knew how their GH assay was calibrated. Dosing of GH at the start of treatment was reported according to body surface by 39%, whereas 59% were dosing according to body weight. GH dose adjustment was primarily based on growth response and height during auxological assessment every 3-4 months (height velocity, change in height velocity or change in height standard deviation scores) as indicated by almost 70% of the respondents. However, dose adjustment according to body surface (38%) and body weight (44%) was also quite common. Sixty-five percent measures IGF-I regularly (at least once a year) during GH therapy in children, and to our surprise 17% reported that they adjust the GH dose according to the IGF-I levels. SUMMARY: In summary, we have found large heterogeneity in the current practice of diagnosis and treatment of childhood GHD among European pediatric endocrinologists. Especially standardizations of GH assays and cutoff values are urgently required to ensure a uniform and correct diagnosis and therapy of GHD in the future.  相似文献   

20.
Colao A 《Hormone research》2004,62(Z3):42-50
Growth hormone (GH) and insulin-like growth factor-I are involved in heart development and in maintaining cardiac structure and performance. Cardiovascular disease has been reported to reduce life expectancy both in GH deficiency (GHD) and in GH excess. Patients with GHD suffer from abnormalities of left ventricular performance, i.e. reduced diastolic filling and impaired response to peak exercise. Patients with GHD also have increased intima-media thickness at the common carotid arteries, associated with a higher occurrence of atherosclerotic plaques, which may further aggravate the haemodynamic conditions. This may contribute to increased cardiovascular and cerebrovascular risk. These cardiovascular abnormalities can be reversed, at least partially, with GH replacement therapy. In recent years, GH therapy has been used to increase cardiac mass in ischaemic or dilated cardiomyopathy, but the results have produced contradictory data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号