首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vascular endothelial cells are continuously exposed to mechanical (e.g., shear stress) and chemical (e.g., growth factors) stimuli. It is important to elucidate the mechanisms by which cells perceive and integrate these different stimuli to regulate the downstream signaling pathways. We (50) have previously reported the shear-induced interplay between two membrane receptors, integrins and Flk-1. In the present study, we investigated the molecular mechanisms regulating the downstream IkappaB kinase (IKK) pathway in response to shear stress and VEGF. Both shear stress and VEGF induced a transient increase of IKK activity. These effects were inhibited by SU-1498, a specific Flk-1 inhibitor, and by a negative mutant of Casitas B-lineage lymphoma (Cbl) with tyrosine-to-phenylalanine mutations at sites 700, 731, and 774 (Cbl(nm)). Because Flk-1 and Cbl form a complex upon shearing or VEGF applications (50), these results suggest that shear stress and VEGF activate IKK via the receptor Flk-1 and its recruitment of the adapter protein Cbl. The inhibition of the shear- and VEGF-induced IKK activities by a negative mutant of Akt indicates that Akt acts upstream to IKK in response to shear stress and VEGF. Furthermore, SU-1498 and Cbl(-nm) abolished the shear- and VEGF-induced Akt activity, indicating that Akt acts at a level downstream to Flk-1 and Cbl. Therefore, our results indicate that the signaling events induced by shear stress and VEGF converge at the membrane receptor Flk-1 and that these stimuli share the Flk-1/Cbl/Akt pathway in activating IKK activation.  相似文献   

2.
Pluripotent embryonic stem (ES) cells are capable of differentiating into all cell lineages, but the molecular mechanisms that regulate ES cell differentiation have not been sufficiently explored. In this study, we report that shear stress, a mechanical force generated by fluid flow, can induce ES cell differentiation. When Flk-1-positive (Flk-1(+)) mouse ES cells were subjected to shear stress, their cell density increased markedly, and a larger percentage of the cells were in the S and G(2)-M phases of the cell cycle than Flk-1(+) ES cells cultured under static conditions. Shear stress significantly increased the expression of the vascular endothelial cell-specific markers Flk-1, Flt-1, vascular endothelial cadherin, and PECAM-1 at both the protein level and the mRNA level, but it had no effect on expression of the mural cell marker smooth muscle alpha-actin, blood cell marker CD3, or the epithelial cell marker keratin. These findings indicate that shear stress selectively promotes the differentiation of Flk-1(+) ES cells into the endothelial cell lineage. The shear stressed Flk-1(+) ES cells formed tubelike structures in collagen gel and developed an extensive tubular network significantly faster than the static controls. Shear stress induced tyrosine phosphorylation of Flk-1 in Flk-1(+) ES cells that was blocked by a Flk-1 kinase inhibitor, SU1498, but not by a neutralizing antibody against VEGF. SU1498 also abolished the shear stress-induced proliferation and differentiation of Flk-1(+) ES cells, indicating that a ligand-independent activation of Flk-1 plays an important role in the shear stress-mediated proliferation and differentiation by Flk-1(+) ES cells.  相似文献   

3.
Role of Cbl in shear-activation of PI 3-kinase and JNK in endothelial cells   总被引:2,自引:0,他引:2  
Fluid shear stress can activate PI-3 kinase and JNK in vascular endothelial cells. This study was designed to establish the role of Cbl as an upstream molecule in the shear stress activation of PI-3 kinase and JNK. Confluent monolayers of bovine aortic endothelial cells (BAECs) were subjected to a shear stress of 12 dyn/cm(2) over intervals ranging from 0.5 to 30 min. Shear stress increased Cbl phosphorylation to 2.9-fold of control and Cbl association with the regulatory PI-3 kinase subunit p85 to 5.4-fold. The PI-3 kinase activity measured in Cbl-immunoprecipitated complexes increased to 11.7-fold in response to shear, suggesting that the shear stress activation of PI-3 kinase involves its association with Cbl. Furthermore, the shear stress induction of JNK was attenuated by a negative mutant of Cbl. Finally, shear stress caused an activation of PI 3-kinase only in BAECs seeded onto fibronectin, vitronectin, or laminin, but not poly-l-lysine. Our results suggest that Cbl plays a critical role in the shear stress induction of PI 3-kinase and JNK activities, and that this shear-induced activation requires the interaction of endothelial integrins with extracellular matrix proteins.  相似文献   

4.
Ligand-stimulated degradation of receptor tyrosine kinase (RTK) is an important regulatory step of signal transduction. The vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is responsible for the VEGF-stimulated nitric oxide (NO) production from endothelial cells. Cellular mechanisms mediating the negative regulation of Flk-1 signaling in endothelial cells have not been investigated. Here we show that Flk-1 is rapidly down-regulated following VEGF stimulation of bovine aortic endothelial cells (BAECs). Consequently, VEGF pretreatment of endothelial cells prevents any further stimulation of Flk-1, resulting in decreased NO production from subsequent VEGF challenges. Ubiquitination of RTKs targets them for degradation; we demonstrate that activation of Flk-1 by VEGF leads to its polyubiquitination in BAECs. Furthermore, VEGF stimulation of BAECs or COS-7 cells transiently transfected with Flk-1 results in the phosphorylation of the ubiquitin ligase Cbl, the enhanced association of Cbl with Flk-1, and the relocalization of Cbl to vesicular structures in BAECs. Overexpression of Cbl in COS-7 cells enhances VEGF-induced ubiquitination of Flk-1, whereas a Cbl mutant lacking the ubiquitin ligase RING finger domain, 70Z/3-Cbl, does not. Moreover, expression of Cbl in contrast to 70Z/3-Cbl inhibits the Flk-1-dependent activation of eNOS and, thus, NO release. In BAEC overexpressing Cbl, the degradation of Flk-1 upon VEGF stimulation is accelerated compared with cells transfected with a control vector (green fluorescent protein). Our findings demonstrate that Flk-1 is rapidly down-regulated following sustained VEGF stimulation and identify Cbl as a negative regulator of Flk-1 signaling to eNOS. Cbl thus plays a role in the regulation of VEGF signaling by mediating the stimulated ubiquitination and, consequently, degradation of Flk-1 in endothelial cells.  相似文献   

5.
6.
Fluid shear stress generated by blood flow modulates endothelial cell function via specific intracellular signaling events. We showed previously that flow activated the phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) via Src kinase-dependent transactivation of vascular endothelial growth factor receptor 2 (VEGFR2). The scaffold protein Gab1 plays an important role in receptor tyrosine kinase-mediated signal transduction. We found here that laminar flow (shear stress = 12 dynes/cm2) rapidly stimulated Gab1 tyrosine phosphorylation in both bovine aortic endothelial cells and human umbilical vein endothelial cells, which correlated with activation of Akt and eNOS. Gab1 phosphorylation as well as activation of Akt and eNOS by flow was inhibited by the Src kinase inhibitor PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and VEGFR2 kinase inhibitors SU1498 and VTI, suggesting that flow-mediated Gab1 phosphorylation is Src kinase-dependent and VEGFR2-dependent. Tyrosine phosphorylation of Gab1 by flow was functionally important, because flow stimulated the association of Gab1 with the PI3K subunit p85 in a time-dependent manner. Furthermore, transfection of a Gab1 mutant lacking p85 binding sites inhibited flow-induced activation of Akt and eNOS. Finally, knockdown of endogenous Gab1 by small interference RNA abrogated flow activation of Akt and eNOS. These data demonstrate a critical role of Gab1 in flow-stimulated PI3K/Akt/eNOS signal pathway in endothelial cells.  相似文献   

7.
Participation of caveolae in beta1 integrin-mediated mechanotransduction   总被引:3,自引:0,他引:3  
We previously reported that caveolin-1 is a key component in a beta1 integrin-dependent mechanotransduction pathway suggesting that caveolae organelles and integrins are functionally linked in their mechanotransduction properties. Here, we exposed BAEC monolayers to shear stress then isolated caveolae vesicles form the plasma membrane. While little beta1 integrin was detected in caveolae derived from cells kept in static culture, shear stress induced beta1 integrin transposition to the caveolae. To evaluate the significance of shear-induced beta1 integrin localization to caveolae, cells were pretreated with cholesterol sequestering compounds or caveolin-1 siRNA to disrupt caveolae structural domains. Cholesterol depletion attenuated integrin-dependent caveolin-1 phosphorylation, Src activation and Csk association with beta1 integrin. Reduction of both caveolin-1 protein and membrane cholesterol inhibited downstream shear-induced, integrin-dependent phosphorylation of myosin light chain. Taken together with our previous findings, the data supports the concept that beta1 integrin-mediated mechanotransduction is mediated by caveolae domains.  相似文献   

8.
Adhesion of hematopoietic cells, mainly through alpha4beta1 and alpha5beta1 integrins, to the bone marrow microenvironment may play important roles in regulation of hematopoiesis. However, the mechanisms for signaling, outside-in signaling, have largely remained to be established. We demonstrate here that cross-linking of alpha4beta1 by anti-alpha4 antibody induces tyrosine phosphorylation of Pyk2, Shc, and Cbl as well as binding of the adaptor protein CrkL with Cbl in a murine hematopoietic cell line, 32D/EpoR-Wt. Furthermore, cross-linking of alpha4beta1 induced activation of the Rho family small GTPase Rac, which was enhanced by induced overexpression of CrkL and was inhibited by the phosphatidylinositol 3(')-kinase (PI3K) inhibitor LY294002. In addition, adhesion of 32D/EpoR-Wt cells to immobilized H-296, a recombinant fibronectin peptide specific for alpha4beta1, induced tyrosine phosphorylation of Jak2, the erythropoietin receptor (EpoR), and the IL-3 receptor beta subunit as well as Pyk2, Shc, and Cbl. Tyrosine phosphorylation of Jak2 and EpoR was also induced in a human leukemic cell line, UT-7, by adhesion to immobilized H-296. However, adhesion of 32D/EpoR-PM4 cells, expressing the W282R mutant EpoR defective in coupling with Jak2, to immobilized H-296 failed to induce tyrosine phosphorylation of the mutant EpoR. These results implicate CrkL in PI3K-dependent activation of Rac by outside-in signaling from alpha4beta1 and suggest that adhesion through alpha4beta1 further activates cytokine receptor-associated Jak2 to induce phosphorylation of these receptors.  相似文献   

9.
To identify the role of caveolin-1 in integrin mechanotransduction, we exposed bovine aortic endothelial cells to 10 dyn/cm2 of laminar shear stress. Caveolin-1 was acutely and transiently phosphorylated with shear, occurring downstream of beta1-integrin activation as the beta1-integrin blocking antibody JB1A was inhibitory. In manipulating Src family kinase (SFK) activity with knockdown of Csk or type 1 protein phosphatase (PP1) treatment, we observed coordinate increase and decrease in shear-induced caveolin-1 phosphorylation, respectively. Hence, shear-stimulated caveolin-1 phosphorylation is regulated by SFKs. Shear-induced recruitment and phosphorylation of caveolin-1 occurred at beta1-integrin sites in a beta1-integrin- and SFK-dependent manner. Csk, described to interact with pY14-caveolin-1 and integrins, bound to an increased pool of phosphorylated caveolin-1 after shear corresponding with elevated Csk at beta1-integrin sites. Like caveolin-1, treatment with JB1A and PP1 attenuated shear-induced Csk association with beta1-integrins. Csk function was assayed with transfection of a caveolin-1 phosphorylation domain peptide. The peptide attenuated shear-induced association of Csk at beta1-integrin sites, as well as colocalization of Csk with paxillin and phosphorylated caveolin-1. Because integrin and Csk activity regulate cytoskeletal reorganization, we evaluated the role of this mechanism in shear-induced myosin light chain (MLC) phosphorylation. Knockdown of Csk expression was sufficient to reduce MLC diphosphorylation due to shear. Disruption of Csk-integrin association by peptide treatment was also inhibitory of the MLC diphosphorylation response. Together these data indicate that integrin activation with shear stress results in SFK-regulated caveolin-1 phosphorylation that, in turn, mediates Csk association at integrin sites, where it plays a role in downstream, shear-stimulated MLC diphosphorylation.  相似文献   

10.
Bone cells are subject to interstitial fluid flow (IFF) driven by venous pressure and mechanical loading. Rapid dynamic changes in mechanical loading cause transient gradients in IFF. The effects of pulsatile flow (temporal gradients in fluid shear) on rat UMR106 cells and rat primary osteoblastic cells were studied. Pulsatile flow induced a 95% increase in S-phase UMR106 cells compared with static controls. In contrast, ramped steady flow stimulated only a 3% increase. Similar patterns of S-phase induction were also observed in rat primary osteoblastic cells. Pulsatile flow significantly increased relative UMR106 cell number by 37 and 62% at 1.5 and 24 h, respectively. Pulsatile flow also significantly increased extracellular signal-regulated kinase (ERK1/2) phosphorylation by 418%, whereas ramped steady flow reduced ERK1/2 activation to 17% of control. Correspondingly, retinoblastoma protein was significantly phosphorylated by pulsatile fluid flow. Inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK)1/2 by U0126 (a specific MEK1/2 inhibitor) reduced shear-induced ERK1/2 phosphorylation and cell proliferation. These findings suggest that temporal gradients in fluid shear stress are potent stimuli of bone cell proliferation.  相似文献   

11.
Atherosclerotic plaques can lead to partial vascular occlusions that produce abnormally high levels of arterial wall shear stress. Such pathophysiological shear stress can promote shear-induced platelet aggregation (SIPA), which has been linked to acute myocardial infarction, unstable angina, and stroke. This study investigated the role of the tyrosine kinase Syk in shear-induced human platelet signaling. The extent of Syk tyrosine phosphorylation induced by pathophysiological levels of shear stress (100 dyn/cm2) was significantly greater than that resulting from physiological shear stress (10 dyn/cm2). With the use of phospho-Syk specific antibodies, these data are the first to show that key regulatory sites of Syk at tyrosines 525/526 (Y525/526) and tyrosine 352 (Y352) were phosphorylated in response to pathophysiological shear stress. Increased phosphorylation at both sites was attenuated by pharmacological inhibition of Syk using two different Syk inhibitors, piceatannol and 3-(1-methyl-1H-indol-3-yl-methylene)-2-oxo-2,3-dihydro-1H-indole-5-sulfonamide (OXSI-2), and by inhibition of upstream Src-family kinases (SFKs). Shear-induced response at the Syk 525/526 site was ADP dependent but not contingent on glycoprotein (GP) IIb-IIIa ligation or the generation of thromboxane (Tx) A2. Pretreatment with Syk inhibitors not only reduced SIPA and Syk phosphorylation in isolated platelets, but also diminished, up to 50%, the platelet-mediated thrombus formation when whole blood was perfused over type-III collagen. In summary, this study demonstrated that Syk is a key molecule in both SIPA and thrombus formation under flow. Pharmacological regulation of Syk may prove efficacious in treating occlusive vascular disease. GPIb; GPIIb-IIIa; signal transduction; thrombosis; collagen  相似文献   

12.
Glioblastoma (GBM) is extremely aggressive and essentially incurable. Its malignancy is characterized by vigorous microvascular proliferations. Recent evidence has shown that tumor cells display the ability to drive blood-perfused vasculogenic mimicry (VM), an alternative microvascular circulation independent of endothelial cell angiogenesis. However, molecular mechanisms underlying this vascular pathogenesis are poorly understood. Here, we found that vascular channels of VM in GBM were composed of mural-like tumor cells that strongly express VEGF receptor 2 (Flk-1). To explore a potential role of Flk-1 in the vasculogenesis, we investigated two glioblastoma cell lines U87 and GSDC, both of which express Flk-1 and exhibit a vascular phenotype on Matrigel. Treatment of both cell lines with either Flk-1 gene knockdown or Flk-1 kinase inhibitor SU1498 abrogated Flk-1 activity and impaired vascular function. Furthermore, inhibition of Flk-1 activity suppressed intracellular signaling cascades, including focal adhesion kinase and mitogen-activated protein kinase ERK1/2. In contrast, blockade of VEGF activity by the neutralizing antibody Bevacizumab failed to recapitulate the impact of SU1498, suggesting that Flk-1-mediated VM is independent of VEGF. Xenotransplantation of SCID/Beige mice with U87 cells and GSDCs gave rise to tumors harboring robust mural cell-associated vascular channels. Flk-1 shRNA restrained VM in tumors and subsequently inhibited tumor development. Collectively, all the data demonstrate a central role of Flk-1 in the formation of VM in GBM. This study has shed light on molecular mechanisms mediating tumor aggressiveness and also provided a therapeutic target for patient treatment.  相似文献   

13.
Eph receptor tyrosine kinases are expressed by T lineage cells, and stimulation with their ligands, the ephrins, has recently been shown to modulate T cell behavior. We show that ephrin-A1 stimulation of Jurkat T cells induces tyrosine phosphorylation of EphA3 receptors and cytoplasmic proteins, including the c-cbl proto-oncogene. Cbl phosphorylation was also observed in peripheral blood T cells. In contrast, stimulation of Jurkat cells with the EphB receptor ligand ephrin-B1 does not cause Cbl phosphorylation. EphA activation also induced Cbl association with Crk-L and Crk-II adapters, but not the related Grb2 protein. Induction of Cbl phosphorylation upon EphA activation appeared to be dependent upon Src family kinase activity, as Cbl phosphorylation was selectively abrogated by the Src family inhibitor 4-amino-5(4-chlorophenyl-7-(tert-butyl)pyrazolo[3,4-d]pyrimidine, while EphA phosphorylation was unimpaired. Ephrin-A1 stimulation of Jurkat cells was also found to cause down-regulation of endogenous EphA3 receptors from the cell surface and their degradation. In accordance with the role of Cbl as a negative regulator of receptor tyrosine kinases, overexpression of wild-type Cbl, but not its 70-Z mutant, was found to down-regulate EphA receptor expression. Receptor down-regulation could also be inhibited by blockage of Src family kinase activity. Our findings show that EphA receptors can actively signal in T cells, and that Cbl performs multiple roles in this signaling pathway, functioning to transduce signals from the receptors as well as regulating activated EphA receptor expression.  相似文献   

14.
Fluid shear stress is a critical determinant of vascular remodeling and atherogenesis. Both integrins and the small GTPase Rho are implicated in endothelial cell responses to shear but the mechanisms are poorly understood. We now show that shear stress rapidly stimulates conformational activation of integrin alpha(v)beta3 in bovine aortic endothelial cells, followed by an increase in its binding to extracellular cell matrix (ECM) proteins. The shear-induced new integrin binding to ECM induces a transient inactivation of Rho similar to that seen when suspended cells are plated on ECM proteins. This transient inhibition is necessary for cytoskeletal alignment in the direction of flow. The results therefore define the role of integrins and Rho in a pathway leading to endothelial cell adaptation to flow.  相似文献   

15.
Interactions of mechanotransduction pathways   总被引:2,自引:0,他引:2  
Integrins may serve as mechanosensors in endothelial cells (ECs): shear stress causes integrin-Shc association, assembly of the signaling complex and then leads to JNK activation. Flow also mediates selective and cell-specific alterations in vascular cell G-protein expression that correlate with changes in cell-signalling, G-protein functionality and modulate Ca2+ concentration. In this study, we explored the cross-talks between EC membrane mechanosensors, such as integrins, ion channels, and G-proteins in shear stress-induced signal transduction by their specific inhibition. Confluent monolayer of bovine aortic endothelial cells (BAECs) were incubated with or without specific inhibitors prior to shearing experiments. Our results showed an attenuation of integrin-Shc association under shear stress with RGD, and with PTX, but not with BAPTA/AM. The inhibitions of shear-activated JNK are similar for RGD and PTX. However, unlike for integrin association, the chelation of calcium reduced JNK activation. These results provide several lines of evidence of the interactions between different mechanosensors in ECs. First, integrin-Shc association required cell attachment and G-protein activity, but not intracellular calcium. Second, shear-induced JNK activation is regulated by multiple mechano-sensing mechanisms such as integrin, G-protein and calcium concentration.  相似文献   

16.
Although activation of outward rectifying Cl(-) channels is one of the fastest responses of endothelial cells (ECs) to shear stress, little is known about these channels. In this study, we used whole-cell patch clamp recordings to characterize the flow-activated Cl(-) current in bovine aortic ECs (BAECs). Application of shear stress induced rapid development of a Cl(-) current that was effectively blocked by the Cl(-) channel antagonist 5-nitro-2-(3-phenopropylamino)benzoic acid (100 microM). The current initiated at a shear stress as low as 0.3 dyne/cm(2), attained its peak within minutes of flow onset, and saturated above 3.5 dynes/cm(2) approximately 2.5-3.5-fold increase over pre-flow levels). The Cl(-) current desensitized slowly in response to sustained flow, and step increases in shear stress elicited increased current only if the shear stress levels were below the 3.5 dynes/cm(2) saturation level. Oscillatory flow with a physiological oscillation frequency of 1 Hz, as occurs in disturbed flow zones prone to atherosclerosis, failed to elicit the Cl(-) current, whereas lower oscillation frequencies led to partial recovery of the current. Nonreversing pulsatile flow, generally considered protective of atherosclerosis, was as effective in eliciting the current as steady flow. Measurements using fluids of different viscosities indicated that the Cl(-) current is responsive to shear stress rather than shear rate. Blocking the flow-activated Cl(-) current abolished flow-induced Akt phosphorylation in BAECs, whereas blocking flow-sensitive K(+) currents had no effect, suggesting that flow-activated Cl(-) channels play an important role in regulating EC flow signaling.  相似文献   

17.
Hematopoietic cell kinase (Hck) is a member of the Src-family of protein tyrosine kinases. We have found that upon enzymatic activation of Hck by the heavy metal mercuric chloride, there was a rapid increase in the levels of tyrosine phosphorylation of several proteins including the proto-oncogene p120(Cbl). Fibroblasts that are transformed with an activated allele of Hck exhibit constitutive Cbl phosphorylation. Upon Fcgamma receptor activation, a more physiologically relevant extracellular signal, Cbl is tyrosine phosphorylated and the Src-family selective inhibitor, PP1, can prevent this phosphorylation on Cbl. Hck phosphorylates Cbl in vitro and the interaction between Cbl and Hck is direct, requiring Hck's unique, SH3 and SH2 domains for optimal binding. Using a novel estrogen-regulated chimera of Hck we have shown a hormone-dependent association between Hck and Cbl in murine fibroblasts. This work suggests that Cbl serves as a key mediator of Hck induced signalling in hematopoietic cells.  相似文献   

18.
19.
Molecular and mechanical bases of focal lipid accumulation in arterial wall   总被引:12,自引:0,他引:12  
Mechanical forces such as shear stress can modulate gene and protein expressions and hence cellular functions by activating membrane sensors and intracellular signaling. Using cultured endothelial cells, we have shown that laminar shear stress causes a transient increase in monocyte chemotactic protein-1 (MCP-1) expression, which involves the Ras-MAP kinase signaling pathway. We have demonstrated that integrins and the vascular endothelial growth factor receptor Flk-1 can sense shear stress, with integrins being upstream to Flk-1. Other possible membrane components involved in the sensing of shear stress include G-protein coupled receptors, intercellular junction proteins, membrane glycocalyx, and the lipid bilayer. Mechano-transduction involves the participation of a multitude of sensors, signaling molecules, and genes. Microarray analysis has demonstrated that shear stress can upregulate and downregulate different genes. Sustained shear stress downregulates atherogenic genes (e.g., MCP-1 and the genes that facilitate lipid accumulation) and upregulates growth-arrest genes. In contrast, disturbed flow observed at branch points and simulated in step-flow channels causes sustained activation of MCP-1 and the genes facilitating cell turnover and lipid accumulation. These findings provide a molecular basis for the explanation of the preferential localization of atherosclerotic lesions at regions of disturbed flow, such as the arterial branch points. The combination of mechanics and biology (from molecules-cells to organs-systems) can help to elucidate the physiological processes of mechano-chemical transduction and improving the methods of the management of important clinical conditions such as coronary artery disease.  相似文献   

20.
Hypotonic stress (HTS) induces various responses in vascular endothelium, but the molecules involved in sensing HTS are not known. To investigate a possible role of heparan sulfate proteoglycan (HSPG) in sensing HTS, we compared the responses of control bovine aortic endothelial cells (BAECs) with those of cells treated with heparinase III, which exclusively degrades HSPG. Tyrosine phosphorylation of 125 kDa FAK induced by HTS (-30%) in control cells was abolished in heparinase III-treated BAECs. The amplitude of the volume-regulated anion channel (VRAC) current, whose activation is regulated by tyrosine kinase, was significantly reduced by the treatment with heparinase III. Also, HTS-induced ATP release through the VRAC pore and the concomitant Ca(2+) transients were significantly reduced in the heparinase III-treated BAECs. In contrast, exogenously applied ATP evoked similar Ca(2+) transients in both control and heparinase III-treated BAECs. The transient formation of actin stress fibers induced by HTS in control cells was absent in heparinase III-treated BAECs. Lysophosphatidic acid (LPA) also induced FAK phosphorylation, actin reorganization and ATP release in control BAECs, but heparinase III did not affect these LPA-induced responses. We conclude from these observations that HSPG is one of the sensory molecules of hypotonic cell swelling in BAECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号