首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multifunctional calmodulin-dependent protein kinase (calmodulin-kinase) from rat brain was autophosphorylated in a Ca2+- and calmodulin-dependent manner. The activity of the autophosphorylated enzyme was independent of Ca2+ and calmodulin. Calmodulin-kinase was dephosphorylated by protein phosphatase C from bovine brain, which is the catalytic subunits of protein phosphatases 1 and 2A. The holoenzyme of protein phosphatase 2A was also involved in the dephosphorylation of the enzyme. The autophosphorylated sites of calmodulin-kinase were universally dephosphorylated by protein phosphatase C. Calmodulin-kinase was inactivated and reactivated by autophosphorylation and dephosphorylation, respectively. Furthermore, the regulation of calmodulin-kinase by autophosphorylation and dephosphorylation was observed using calmodulin-kinase from canine heart. These results suggest that the activity of calmodulin-kinase is regulated by autophosphorylation and dephosphorylation, and that the regulation is the universal phenomenon for many other calmodulin-kinases in various tissues.  相似文献   

2.
Localization of Glycogen Synthase in Brain   总被引:1,自引:3,他引:1  
Antisera against glycogen synthase from canine brain were prepared and used for investigation of the localization of the enzyme in the brain. Antisera cross-reacted only with the 88-kilodalton protein that is the subunit of brain glycogen synthase. Immunoreactivity of glycogen synthase was universally distributed in all regions of the brain, although hippocampus, cerebral cortex, caudatoputamen, and cerebellar cortex had relatively high immunoreactivity. Light microscopic examination revealed that the immunoreactivity was found in all cell types, such as neurons in several regions, astrocytes, ependymal cells surrounding the ventricle, oligodendrocytes, and epithelial cells of the choroid plexus in the ventricle. Immunoreactive intensity was more prominent in neurons than glial cells. Immunostaining may be a useful tool for investigation of the state of glycogen metabolism under normal and pathological conditions.  相似文献   

3.
We have previously isolated two Ca2+, calmodulin-dependent protein kinases with molecular weights of 120,000 (120K enzyme) and 640,000 (640K enzyme), respectively, by gel filtration analysis from rat brain. Chicken gizzard myosin light-chain kinase and the 120K enzyme phosphorylated two light chains of brain myosin, whereas the 640K enzyme phosphorylated both the two light chains and the heavy chain. The phosphopeptides of the light chains digested by Staphylococcus aureus V8 protease were similar among chicken gizzard myosin light-chain kinase, the 120K enzyme, and the 640K enzyme. Only the seryl residue in the light chains and the heavy chain was phosphorylated by the enzymes. The phosphorylation of brain myosin by any of these enzymes led to an increase in actin-activated Mg-ATPase activity. The results suggest that brain myosin is regulated by brain Ca2+, calmodulin-dependent protein kinases in a similar but distinct mechanism in comparison with that of smooth muscle myosin.  相似文献   

4.
Abstract: A Ca2+- and calmodulin-dependent protein kinase was purified from rat brain cytosol fraction to apparent homogeneity at approximately 800-fold and with a 5% yield. The purified enzyme had a molecular weight of 640,000 as determined by gel filtration analysis on Sephacryl S-300 and a sedimentation coefficient of 15.3 S by sucrose density gradient centrifugation, and resulted in a single protein band of MW 49,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that the native enzyme has a large molecular weight and consists of 11 to 14 identical subunits. The purified enzyme exhibited K m values of 109 and 30 μM for ATP and chicken gizzard myosin light chain, respectively, and K a values of 12 n M and 1.9 μM for brain calmodulin and Ca2+, respectively. In addition to myosin light chain, myelin basic protein, casein, arginine-rich histone, microtubule protein, and synaptosomal proteins were phosphorylated by the enzyme in a Ca2+- and calmodulin-dependent manner. The purified enzyme was phosphorylated without the addition of the catalytic subunit of cyclic AMP-dependent protein kinase. Our findings indicate that there is a multifunctional Ca2+- and calmodulin-dependent protein kinase in the brain and that this enzyme may regulate the reactions of various endogenous proteins.  相似文献   

5.
Abstract: τ protein kinase I (TPKI) purified from bovine brain extract has been shown to phosphorylate τ and to form paired helical filament (PHF) epitopes and was found recently to be identical to glycogen synthase kinase-3β (GSK-3β). Before elucidating a role of TPKI/GSK-3β in PHF formation, it is necessary to investigate the normal function of the enzyme. To study the distribution and developmental changes of the enzyme, specific polyclonal antibodies were prepared against TPKI and GSK-3α. Immunoblot analysis demonstrated that TPKI was nearly specifically localized in the brain of adult rats. The level of TPKI in the rat brain was high at gestational day 18, peaked on postnatal day 8, and then decreased rapidly to a low level, which was sustained up to 2 years. Immunohistochemistry indicated primarily neuronal localization of TPKI. Growing axons were stained most intensely in the developing cerebellum, but the immunoreactivity became restricted to the gray matter in the mature tissue. Parallel fibers had a high level of TPKI and also stained intensely for τ. These findings indicate that τ is one of the physiological substrates of TPKI and suggest that the enzyme plays an important role in the growth of axons during development of the brain.  相似文献   

6.
Tryptophan hydroxylase is activated in a crude extract by addition of ATP and Mg2+. This activation is reversible and requires in addition both Ca2+ and calmodulin. Thus, phosphorylation by an endogenous calmodulin-dependent protein kinase has long been suspected. Now that we have prepared a specific polyclonal antibody to rat brain tryptophan hydroxylase, we have been able to prove that this hypothesis is correct. After incubation of purified tryptophan hydroxylase with Ca2+/calmodulin-dependent protein kinase together with [gamma-32P]ATP, Mg2+, Ca2+, and calmodulin, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotting of the enzymes onto nitrocellulose sheets, we could label the band of tryptophan hydroxylase by the antiserum and the peroxidase technique and show by autoradiography that 32P was incorporated into this band. By measuring the radioactivity, we calculated that about 1 mol of phosphate was incorporated per 8 mol of subunits of the enzyme (2 mol of native enzyme). Because the concentration of ATP which we employed (50 microM) gives about half-maximal activation in crude extract compared to saturating ATP conditions (about 1 mM), this result indicates that the incorporation of at least 1 mol of phosphate/mol of tetramer of native tryptophan hydroxylase is required for maximal activation.  相似文献   

7.
Calcium/Calmodulin-Dependent Protein Kinase II in Squid Synaptosomes   总被引:2,自引:1,他引:2  
The Ca2+/calmodulin (CaM)-dependent protein kinase II system in squid nervous tissue was investigated. The Ca2+/CaM-dependent protein kinase II was found to be very active in the synaptosome preparation from optic lobe, where it was associated with the high-speed particulate fraction. Incubation of the synaptosomal homogenate with calcium, calmodulin, magnesium, and ATP resulted in partial and reversible conversion of the Ca2+/CaM-dependent protein kinase II from its calcium-dependent form to a calcium-independent species. The magnitude of this conversion reaction could be increased by inclusion of the protein phosphatase inhibitor NaF or by substitution of adenosine 5'-O-(3-thiotriphosphate) for ATP. When [gamma-32P]ATP was used, proteins of 54 and 58 kilodaltons (kDa) as well as proteins greater than 100 kDa were rapidly 32P-labeled in a calcium-dependent manner. Major 125I-CaM binding proteins in the synaptosome membrane fraction were 38 and 54 kDa. The Ca2+/CaM-dependent protein kinase II was purified from the squid synaptosome and was shown to consist of 54- and 58-60-kDa subunits. The purified kinase, like Ca2+/CaM-dependent protein kinase II from rat brain, catalyzed autophosphorylation associated with formation of the calcium-independent form. These studies, characterizing the Ca2+/CaM-dependent protein kinase II in squid neural tissue, are supportive of the putative role of this kinase in regulating calcium-dependent synaptic functions.  相似文献   

8.
Purified P400 protein was phosphorylated by both purified Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) and the catalytic subunit of cyclic AMP-dependent protein kinase (A-kinase). Because P400 protein was suggested to function as an integral membrane protein, we investigated the phosphorylation of P400 protein using crude mitochondrial and microsomal fractions (P2/P3 fraction). Incubation of the P2/P3 fraction from mouse cerebellum with cyclic AMP or the catalytic subunit of A-kinase stimulated the phosphorylation of P400 protein. The phosphorylation of P400 protein was not observed in the P2/P3 fraction from mouse forebrain. Cyclic AMP and A-kinase enhanced the phosphorylation of several proteins, including P400 protein, suggesting that P400 protein is one of the best substrates for A-kinase in the P2/P3 fraction. Although endogenous and exogenous CaM kinase II stimulated the phosphorylation of some proteins in the P2/P3 fraction, the phosphorylation of P400 protein was weak. Immunoprecipitation with the monoclonal antibody to P400 protein confirmed that the P400 protein itself was definitely phosphorylated by the catalytic subunit of A-kinase and CaM kinase II. A-kinase phosphorylated only the seryl residue in P400 protein. Immunoblot analysis of the cells in primary culture of mouse cerebellum confirmed the expression of P400 protein, which migrated at the same position on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that in the P2/P3 fraction. Incubation of the cultured cerebellar cells with [32P]orthophosphate resulted in the labeling of P400 protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Abstract: Mg-ATP-dependent protein phosphatase activating factor [kinase FA/glycogen synthase kinase 3 (GSK-3)] has been identified in highly purified clathrin-coated vesicles (CCVs) isolated from pig brain. Kinase FA was found to exist in an inactive state but can be activated by 1% Triton X-100 or [ M /Tris-HC] extraction in brain CCVs. Activation of kinase FA in CCVs is due to disassociation of the kinase from CCVs as demonstrated on sucrose density-gradient ultracentrifugation and Sepharose CL-4B gel filtration. Using purified brain CCVs as substrates, kinase FA enhanced the endogenous phosphorylation of assembly protein complexes in the molecular weight range of 100,000-130,000 severalfold, as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography. Comparisons with well-defined brain CCV-associated endogenous protein kinases such as pp50 kinase/AP50 and casein kinase 2 provide evidence that kinase FA/GSK-3 represents a third potent and unique CCV-associated protein kinase distinctly different from the previously described CCV protein kinases, suggesting the possible involvement of kinase FA in the regulation of CCV functions in the brain. The results also support the notion that protein kinase FA is involved in cell surface signal transduction in the CNS.  相似文献   

10.
These studies describe a cytoskeletal-associated protein kinase activity in astrocytes that phosphorylated the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin and that appeared to be distinct from protein kinase C (PK-C) and the cyclic AMP-dependent protein kinase (PK-A). The cytoskeletal-associated kinase activity phosphorylated intermediate filament proteins in the presence of 10 mM MgCl2 and produced an even greater increase in 32P incorporation into these proteins in the presence of calcium/calmodulin. Tryptic peptide mapping of phosphorylated intermediate filament proteins showed that the intermediate filament protein kinase activity produced unique phosphopeptide maps, in both the presence and the absence of calcium/calmodulin, as compared to that of PK-C and PK-A, although there were some common sites of phosphorylation among the kinases. In addition, it was determined that the intermediate filament protein kinase activity phosphorylated both serine and threonine residues of the intermediate filament proteins, vimentin and GFAP. However, the relative proportion of serine and threonine residues phosphorylated varied depending on the presence or absence of calcium/calmodulin. The magnesium-dependent activity produced the highest proportion of threonine phosphorylation, suggesting that the calcium/calmodulin-dependent kinase activity acts mainly at serine residues. PK-A and PK-C phosphorylated mainly serine residues. Also, the intermediate filament protein kinase activity phosphorylated both the N-and the C-terminal domains of vimentin and the N-terminal domain of GFAP. In contrast, both PK-C and PK-A are known to phosphorylate the N-terminal domains of both proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract: Reversible spinal cord ischemia in rabbits induced a rapid loss of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) activity measured as incorporation of phosphate into exogenous substrates. About 70% of the activity was lost from the cytosolic fraction of spinal cord homogenates after 15 min of ischemia preceding irreversible paraplegia, which takes 25 min in this model. The loss of enzyme activity correlated with a loss of in situ renaturable autophosphorylation activity and a loss of CaM kinase II α and β subunits in the cytosol detected by immunoblotting. CaM kinase II activity in the particulate fraction also decreased but the protein levels of the a and β subunits increased. Thus ischemia resulted in an inactivation of CaM kinase II and a sequential or concurrent subcellular redistribution of the enzyme. However, denaturation and renaturation in situ of the CaM kinase subunits immobilized on membranes partly reversed the apparent inactivation of the enzyme in the particulate fraction. CaM kinase II activity was restored after reperfusion following short (≤25 min) durations of ischemia but not after longer durations (60 min) that result in irreversible paraplegia. The ischemia-induced inactivation of CaM kinase II, which phosphorylates proteins regulating many cellular processes, may be important in the cascade of events leading to delayed neuronal cell death.  相似文献   

12.
Polyclonal antibodies against Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) of rat brain were prepared by immunizing rabbits and then purified by antigen-affinity column. The antibodies which recognized both subunits of the enzyme with Mrs 49K and 60K were used for the study on the distribution of CaM kinase II in formalin-fixed, paraffin-embedded tissues. In the brain, a light-microscopic study demonstrated strong immunoreactivity in neuronal somata and dendrites and weak immunoreactivity in nuclei. The densely stained regions included cerebral cortex, hippocampal formation, striatum, substantia nigra, and cerebellar cortex. In substantia nigra, neurites were stained, but not neuronal somata. Electron microscopy revealed that the immunoreactive product was highly concentrated at the postsynaptic densities. In addition to neurons, weak immunoreactivity was also demonstrated in glial cells, such as astrocytes and ependymal cells of ventricles and epithelial cells of choroid plexus. In other tissues, strong immunoreactivity was observed in the islet of pancreas and moderate immunoreactivity in skeletal muscle and kidney tubules. Immunoreactivity was demonstrated in all of the tissues tested. The results suggest that CaM kinase II is widely distributed in the tissues.  相似文献   

13.
Abstract: The two pathological lesions found in the brains of Alzheimer's disease patients, neurofibrillary tangles and neuritic plaques, are likely to be formed through a common pathway. Neurofibrillary tangles are intracellular aggregates of paired helical filaments, the main component of which is hyperphosphorylated forms of the microtubule-associated protein τ. Extracellular neuritic plaques and diffuse and vascular amyloid deposits are aggregates of β-amyloid protein, a 4-kDa protein derived from the amyloid precursor protein (APP). Using conditions in vitro under which two proline-directed protein kinases, glycogen synthase kinase-3β (GSK-3β) and mitogen-activated protein kinase (MAPK), were able to hyperphosphorylate τ, GSK-3β but not MAPK phosphorylated recombinant APPcyt. The sole site of phosphorylation in APPcyt by GSK-3β was determined by phosphoamino acid analysis and phosphorylation of APPcyt mutant peptides to be Thr743 (numbering as for APP770). This site was confirmed by endoproteinase Glu-C digestion of APPcyt and peptide sequencing. The ability of GSK-3β to phosphorylate APPcyt and τ provides a putative link between the two lesions and indicates a critical role of GSK-3β in the pathogenesis of Alzheimer's disease.  相似文献   

14.
Abstract: The gene for Drosophila calcium/calmodulin-dependent protein kinase II is alternatively spliced to generate up to 18 different proteins that vary only in a region analogous to the point where mammalian α, β, γ, and δ isozymes show the greatest divergence from each other. To investigate the function of this variable region, we have characterized the catalytic and structural properties of six of the Drosophila isoforms. By several criteria (domain organization, low affinity for calmodulin, holoenzyme structure, and ability to autophosphorylate and become independent of calcium), these proteins are functional homologues of the mammalian calcium/calmodulin-dependent protein kinase II. Two major isoform-specific catalytic differences were observed. First, the R3A isoform was found to have a significantly higher K act for calmodulin than the other isoforms. This indicates that the variable region, which is located distal to the calmodulin-binding domain, may play a role in activation of the enzyme by calmodulin. Decreased sensitivity to calmodulin may be biologically important if free calmodulin is limiting within the neuron. The second catalytic difference noted was that the R6 isoform had a significantly lower K m for the peptide substrate used in this study. Although the variable region is not in the catalytic part of the enzyme, it may have an indirect function in substrate selectivity.  相似文献   

15.
Abstract: In this study we demonstrate that Drosophila calcium/calmodulin-dependent protein kinase II (CaMKII) is capable of complex regulation by autophosphorylation of the three threonines within its regulatory domain. Specifically, we show that autophosphorylation of threonine-287 in Drosophila CaMKII is equivalent to phosphorylation of threonine-286 in rat α CaMKII both in its ability to confer calcium independence on the enzyme and in the mechanistic details of how it becomes phosphorylated. Autophosphorylation of this residue occurs only within the holoenzyme structure and requires calmodulin (CaM) to be bound to the substrate subunit. Phosphorylation of threonine-306 and threonine-307 in the CaM binding domain of the Drosophila kinase occurs only in the absence of CaM, and this phosphorylation is capable of inhibiting further CaM binding. Additionally, our findings suggest that phosphorylation of threonine-306 and threonine-307 does not mimic bound CaM to alleviate the requirement for CaM binding to the substrate subunit for intermolecular threonine-287 phosphorylation. These results demonstrate that the mechanism of regulatory autophosphorylation of this kinase predates the split between invertebrates and vertebrates.  相似文献   

16.
Abstract: The exposure of cultured rat hippocampal neurons to 500 µ M glutamate for 20 min induced a 55% decrease in the total Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) activity. The Ca2+-independent activity and autophosphorylation of CaM kinase II decreased to the same extent as the changes observed in total CaM kinase II activity, and these decreases in activities were prevented by pretreatment with MK-801, an N -methyl- d -aspartate (NMDA)-type receptor antagonist, and the removal of extracellular calcium but not by antagonists against other types of glutamate receptors and protease inhibitors. Similarly, the decrease in the CaM kinase II activity was induced by a Ca2+ ionophore, ionomycin. Immunoblot analysis with the anti-CaM kinase II antibody revealed a significant decrease in the amount of the enzyme in the soluble fraction, in contrast with the inverse increase in the insoluble fraction; thus, the translocation was probably induced during treatment of the cells with glutamate. These results suggest that glutamate released during brain ischemia induces a loss of CaM kinase II activity in hippocampal neurons, by stimulation of the NMDA receptor, and that inactivation of the enzyme may possibly be involved in the cascade of the glutamate neurotoxicity following brain ischemia.  相似文献   

17.
Abstract: The kinetics of protein kinase C (PKC) translocation and down-regulation in the 20-day-old fetal brain following short and long episodes of maternal-fetal blood flow occlusion were examined. Restriction for up to 15 min increased the specific enzymatic activity in the membrane by 73%, indicative of translocation. After a 30-min restriction and a 2.5-h reperfusion the total PKC activity in the cytosol was reduced to ~50%, consistent with down-regulation/inactivation. The total membrane PKC activity remained unchanged. Several PKC isoenzymes, including α, β1, β2, ε, and ζ, but not γ, were identified in the fetal brain on western blots using specific antibodies. Compared with postnatal day 15, a greater proportion of the fetal PKC isoforms, particularly α and ε, were membrane bound. α, β2, ε, and ζ, but not β1, were translocated into the membrane compartment after episodes of ischemia alone or ischemia and reperfusion. There were no major identifiable proteolytic fragments in the 50-kDa region. Major losses in the total enzymatic activity were encountered in both cytosol and membrane fractions after storage of the enzyme for 10 days at 4°C. These losses were less profound in membrane fractions from ischemic than control animals, suggesting a relative sparing of activity in the membrane as a result of the insult. Preincubation of DEAE-purified PKC for 30 min at 50°C resulted in enzyme inactivation. This was accompanied by a size reduction (~2–5 kDa) in the gel migration of several isozymes in both cytosol and membrane fractions. At 42°C, although the molecular size was apparently reduced, limited PKC activity was observed, suggesting either that the two processes are not mutually related or that certain PKC isoforms can act after partial modification. The data suggest that ischemic episodes stimulate two apparently adverse processes in the PKC signal transduction cascade: a decline in the cytosol and a sparing of the membrane-translocated PKC activity. The latter may provide an important regulatory mechanism for PKC long-term activation in nerve cells.  相似文献   

18.
Microtubule-associated protein 2 (MAP2) is an excellent substrate for both cyclic-AMP (cAMP)-dependent and Ca2+/calmodulin-dependent kinases. A recently purified cytosolic Ca2+/calmodulin-dependent kinase (now designated CaM kinase II) phosphorylates MAP2 as a major substrate. We now report that microtubule-associated cAMP-dependent and calmodulin-dependent protein kinases phosphorylate MAP2 on separate sites. Tryptic phosphopeptide digestion and two-dimensional phosphopeptide mapping revealed 11 major peptides phosphorylated by microtubule-associated cAMP-dependent kinase and five major peptide species phosphorylated by calmodulin-dependent kinase. All 11 of the cAMP-dependently phosphorylated peptides were phosphorylated on serine residues, whereas four of five major peptides phosphorylated by the calmodulin-dependent kinase were phosphorylated on threonine. Only one peptide spot phosphorylated by both kinases was indistinguishable by both migration and phosphoamino acid site. The results indicate that cAMP-dependent and calmodulin-dependent kinases may regulate microtubule and cytoskeletal dynamics by phosphorylation of MAP2 at distinct sites.  相似文献   

19.
Abstract: To investigate the cellular mechanisms regulating neurofilament-heavy subunit (NF-H) side-arm phosphorylation, we studied the ability of three putative neurofilament kinases, glycogen synthase kinase-3 (GSK-3)α, GSK-3β, and cyclin-dependent kinase-5 (cdk-5), to phosphorylate NF-H in transfected cells. We analysed NF-H phosphorylation by using a panel of phosphorylation-dependent antibodies and also by monitoring the electrophoretic mobility of the transfected NF-H on sodium dodecyl sulphate-polyacrylamide gel electrophoresis because this is known to be affected by side-arm phosphorylation. Our results demonstrate that whereas GSK-3α, GSK-3β, and cdk-5 will all phosphorylate NF-H, they generate different antibody reactivity profiles. GSK-3α and GSK-3β induce a partial retardation of a proportion of the transfected NF-H, but only cdk-5 alters the rate of electrophoretic migration to that of NF-H from brain. We conclude that cdk-5 and GSK-3 phosphorylate different residues or sets of residues within NF-H sidearms in cells. We further show that cdk-5 is active in both the CNS and the PNS but that this activity is not dependent on expression of its activator, p35. This suggests that there are other activators of cdk-5.  相似文献   

20.
Forebrain ischemia in gerbils, produced by brief bilateral carotid occlusion, induced the dramatic loss of Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) as determined by both kinase activity assays and western blot analysis. In cortex and hippocampus, cytosolic CaM-kinase II was completely lost within 2-5 min of ischemia. Particulate CaM-kinase II was more stable and decreased in level approximately 40% after 10 min of ischemia followed by 2 h of reperfusion. CaM-kinase II in cerebellum, which does not become ischemic, was not affected. The rapid loss of CaM-kinase II within 2-5 min was quite specific because cytosolic cyclic AMP kinase and protein kinase C in hippocampus were not affected. These data indicate that cytosolic CaM-kinase II is one of the most rapidly degraded proteins after brief ischemia. Because the multifunctional CaM-kinase II has been implicated in the regulation of numerous neuronal functions, its loss may destine the neuronal cell for death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号