首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous anatomical studies demonstrated vagal innervation to the ovary and distal colon and suggested the vagus nerve has uterine inputs. Recent behavioral and physiological evidence indicated that the vagus nerves conduct sensory information from the uterus to the brainstem. The present study was undertaken to identify vagal sensory connections to the uterus. Retrograde tracers, Fluorogold and pseudorabies virus were injected into the uterus and cervix. DiI, an anterograde tracer, was injected into the nodose ganglia. Neurectomies involving the pelvic, hypogastric, ovarian and abdominal vagus nerves were performed, and then uterine whole-mounts examined for sensory nerves containing calcitonin gene-related peptide. Nodose ganglia and caudal brainstem sections were examined for the presence of estrogen receptor-containing neurons in ”vagal locales." Labeling of uterine-related neurons in the nodose ganglia (Fluorogold and pseudorabies virus) and in the brainstem nuclei (pseudorabies virus) was obtained. DiI-labeled nerve fibers occurred near uterine horn and uterine cervical blood vessels, in the myometrium, and in paracervical ganglia. Rats with vagal, pelvic, hypogastric and ovarian neurectomies exhibited a marked decrease in calcitonin gene-related peptide-immunoreactive nerves in the uterus relative to rats with pelvic, hypogastric, and ovarian neurectomies with intact vagus nerves. Neurons in the nodose ganglia and nucleus tractus solitarius were immunoreactive for estrogen receptors. These results demonstrated: (1) the vagus nerves serve as connections between the uterus and CNS, (2) the nodose ganglia contain uterine-related vagal afferent neuron cell bodies, and (3) neurons in vagal locales contain estrogen receptors.  相似文献   

2.
Neurocalcin-like immunoreactivity in the rat esophageal nervous system   总被引:1,自引:0,他引:1  
Neurocalcin is a newly identified neuronal calcium-binding protein. We tried here to investigate the immunohistochemical distribution of neurocalcin in the rat esophagus. Nerve cell bodies having neurocalcin immunoreactivity were found throughout the myenteric plexus. In the myenteric ganglia, two types of nerve terminals showed neurocalcin immunoreactivity. One was varicose terminals containing numerous small clear vesicles and forming a synapse with nerve cells. The other terminals were characterized by laminar or pleomorphic structure and many mitochondria. These laminar terminals were supposed to be sensory receptors of the esophageal wall. In the motor endplates of the striated muscles, nerve terminals containing many small clear vesicles and mitochondria also had neurocalcin immunoreactivity. After left vagus nerve cutting under the nodose ganglia, the number of immunopositive thick nerve fibers, laminar endings and nerve terminals on the striated muscles decreased markedly. Retrograde tracing experiments using Fast Blue showed extrinsic innervation of esophagus from ambiguus nucleus, dorsal motor nucleus of vagus, superior cervical ganglia, celiac ganglia, nodose ganglia and dorsal root ganglia. In the celiac ganglia, nodose ganglia and dorsal root ganglia, retrogradely labeled nerve cells were neurocalcin-immunoreactive. Neurons in the celiac ganglia may project varicose terminals, while nodose and dorsal root neurons project laminar terminals. Although cell bodies of motoneurons in the ambiguus nucleus lacked neurocalcin immunoreactivity, these neurons may contain neurocalcin only in the nerve terminals in the motor endplates. Neurocalcin immunoreactivity is distributed in many extrinsic and intrinsic neurons in the esophagus and this protein may play important roles in regulating calcium signaling in the neurons.  相似文献   

3.
Combined use of the intraaxonal retrograde transport of the fluorescent marker ‘true blue’ with substance P (SP) immunocytochemistry has been used to trace the nodose ganglion projections of SP-containing neurons of the aortic depressor nerve. It has been found that (1) SP immunoreactive (SP-I) cell bodies are clearly demonstrable in clusters in the rostral part of the nodose ganglion without the aid of colchicine pretreatment; (2) ‘true blue’ is retrogradely transported to the nodose ganglion following its application to the central cut end of the aortic nerve; (3) ‘true blue’ fluorescence and SP fluorescent immunoreactivity can be visualized in the same tissue section and certain cell bodies in the nodose ganglia contain both SP-I and retrogradely transported ‘true blue’. These results indicate that the aortic nerve which projects from the aortic arch baro- and/or chemoreceptors to brainstem vasomotor centers contains SP-I afferent fibers which emanate from the nodose ganglion.  相似文献   

4.
Combined use of the intraaxonal retrograde transport of the fluorescent marker ‘true blue’ with substance P (SP) immunocytochemistry has been used to trace the nodose ganglion projections of SP-containing neurons of the aortic depressor nerve. It has been found that (1) SP immunoreactive (SP-I) cell bodies are clearly demonstrable in clusters in the rostral part of the nodose ganglion without the aid of colchicine pretreatment; (2) ‘true blue’ is retrogradely transported to the nodose ganglion following its application to the central cut end of the aortic nerve; (3) ‘true blue’ fluorescence and SP fluorescent immunoreactivity can be visualized in the same tissue section and certain cell bodies in the nodose ganglia contain both SP-I and retrogradely transported ‘true blue’. These results indicate that the aortic nerve which projects from the aortic arch baro- and/or chemoreceptors to brainstem vasomotor centers contains SP-I afferent fibers which emanate from the nodose ganglion.  相似文献   

5.
The vanilloid receptor VR1 is a nonselective cation channel activated by capsaicin as well as increases in temperature and acidity, and can be viewed as molecular integrator of chemical and physical stimuli that elicit pain. The distribution of VR1 receptors in peripheral and central processes of rat primary vagal afferent neurons innervating the gastrointestinal tract was investigated by immunohistochemistry. Forty-two percent of neurons in the nodose ganglia retrogradely labeled from the stomach wall expressed low to moderate VR1 immunoreactivity (VR1-IR). VR1-IR was considerably lower in the nodose ganglia as compared to the jugular and dorsal root ganglia. In the vagus nerve, strongly VR1-IR fibers ran in separate fascicles that supplied mainly cervical and thoracic targets, leaving only weakly VR1-IR fibers in the subdiaphragmatic portion. Vagal afferent intraganglionic laminar endings (IGLEs) in the gastric and duodenal myenteric plexus did not express VR1-IR. Similarly, VR1-IR was contained in fibers running in perfect register with vagal afferents, but was not colocalized with horseradish peroxidase in the same varicosities of intramuscular arrays (IMAs) and vagal afferent fibers in the duodenal submucosa anterogradely labeled from the nodose ganglia. Only in the gastric mucosa did we find evidence for colocalization of VR1-IR in vagal afferent terminals. In contrast, many nerve fibers coursing through the myenteric and submucosal plexuses contained detectable VR1-IR, the majority of which colocalized calcitonin gene-related peptide immunoreactivity. In the dorsal medulla there was a dense plexus of VR1-IR varicose fibers in the commissural, dorsomedial and gelatinosus subnuclei of the medial NTS and the lateral aspects of the area postrema, which was substantially reduced, but not eliminated on the ipsilateral side after supranodose vagotomy. It is concluded that about half of the vagal afferents innervating the gastrointestinal tract express low levels of VR1-IR, but that presence in most of the peripheral terminal structures is below the immunohistochemical detection threshold.  相似文献   

6.
Herpes simplex virus type 1 (HSV-1) is commonly encountered first during childhood as an oral infection. After this initial infection resolves, the virus remains in a latent form within innervating sensory ganglia for the life of the host. We have previously shown, using a murine model, that HSV-1 placed within the lumen of the esophagus gains access to nerves within the gut wall and establishes a latent infection in sensory ganglia (nodose ganglia) of the tenth cranial nerve (R. M. Gesser, T. Valyi-Nagy, S. M. Altschuler, and N. W. Fraser, J. Gen. Virol. 75:2379-2386, 1994). Peripheral processes of neurons in these ganglia travel through the vagus nerve and function as primary sensory receptors in most of the gastrointestinal tract, relaying information from the gut wall and mucosal surface to secondary neurons within the brain stem. In the work described here, we further examined the spread of HSV-1 through the enteric nervous system after oral inoculation. By immunohistochemistry, HSV-1 was found to infect myenteric ganglia in Auerbach's plexus between the inner and outer muscle layers of the gut wall, submucosal ganglia (Meisner's plexus), and periglandular ganglion plexuses surrounding submucosal glands. Virus-infected nerve fibers were also seen projecting through the mucosal layer to interact directly with surface epithelial cells. These intramucosal nerve fibers may be a conduit by which intraluminal virus is able to gain access to the enteric nervous system from the gastrointestinal lumen.  相似文献   

7.
The possibility that substances P (SP) is a neurotransmitter of baro- and chemoreceptor afferents in the rat was investigated. SP-like immunoreactivity (SP-I) was analyzed quantitatively by radioimmunoassay in various levels of the nucleus tractus solitarius (NTS), the site of termination of these afferents while SP-containing afferent neurons were studied in various portions of the peripheral pathways by immunocytochemistry. It was found that the NTS contained significant amounts of SP-I and that unilateral removal of the nodose ganglia reduces the SP-I content of those portions of the NTS known to receive vagal afferents. In addition, SP-I was visualized in discrete fibers in the tunica adventitia of the aortic arch and carotid sinus regions, the vagus nerve and nodose ganglia. These results in the rat are consistent with our previous studies in the cat and provide further evidence that SP is contained within baro- and chemoreceptor afferent nerves.  相似文献   

8.
Distribution of GABA-like immunoreactive neurons in the slug Limax maximus   总被引:2,自引:0,他引:2  
Summary Immunohistochemical techniques were used to study the distribution of gamma-amino butyric acid (GABA)-like immunoreactive neurons in the nervous system of the slug Limax maximus. Approximately 170 GABA-like immunoreactive cell bodies were found in the central nervous system. These were located in the cerebral, buccal and pedal ganglia. Most GABA-like immunoreactive neurons had small cell bodies, which were aggregated into discrete clusters within the cerebral and pedal ganglia. Three pairs of longer, uniquely identifiable, GABA-like immunoreactive cells were found in the cerebral ganglion. GABA-like immunoreactive nerve fibres were also found in all of the central ganglia but were absent from peripheral nerves. These results suggest that GABA acts as a central neurotransmitter in the slug. The possible roles of GABA-ergic neurotransmission in the slug are discussed.  相似文献   

9.
The paradigm for the control of feeding behavior has changed significantly. Research has shown that leptin, in the presence of CCK, may mediate the control of short-term food intake. This interaction between CCK and leptin occurs at the vagus nerve. In the present study, we aimed to characterize the interaction between CCK and leptin in the vagal primary afferent neurons. Single neuronal discharges of vagal primary afferent neurons innervating the gastrointestinal tract were recorded from rat nodose ganglia. Three groups of nodose ganglia neurons were identified: group 1 responded to CCK-8 but not leptin; group 2 responded to leptin but not CCK-8; group 3 responded to high-dose CCK-8 and leptin. In fact, the neurons in group 3 showed CCK-8 and leptin potentiation, and they responded to gastric distention. To identify the CCK-A receptor (CCKAR) affinity states that colocalize with the leptin receptor OB-Rb, we used CCK-JMV-180, a high-affinity CCKAR agonist and low-affinity CCKAR antagonist. As expected, immunohistochemical studies showed that CCK-8 administration significantly potentiated the increase in the number of c-Fos-positive neurons stimulated by leptin in vagal nodose ganglia. Administration of CCK-JMV-180 eliminated the synergistic interaction between CCK-8 and leptin. We conclude that both low- and high-affinity CCKAR are expressed in nodose ganglia. Many nodose neurons bearing low-affinity CCKAR express OB-Rb. These neurons also respond to mechanical distention. An interaction between CCKAR and OB-Rb in these neurons likely facilitates leptin mediation of short-term satiety.  相似文献   

10.
V D Goncharuk 《Tsitologiia》1990,32(5):474-480
Cell bodies of cardiovascular receptors localized in the ganglion nodosum of rabbits exposed to experimental emotional stress were studied with the light and electron microscope. Two groups of animals were selected for investigation. Under emotional stress rabbits of one group demonstrated almost unchanged arterial pressure and only a small increase in heart rate, while animals of the other group displayed strongly marked disturbances of their blood circulation leading to the lethal outcome at the end of experiment. In the first group rabbits, the microscopic anatomy and ultrastructure of the nodose ganglion neurons indicated an increased activity in the nerve cell. At the same time, morphological evidences of exhaustion were revealed in neurons of the nodose ganglion of the second group rabbits. A possible role of the distortion of the afferent information in pathogenesis of cardiovascular disorders under emotional stress is discussed.  相似文献   

11.
Expression of vanilloid receptors in sympathetic and afferent ganglionic neurons was studied in rats of different ages (newborn, 10-day old, 20-day old, 30-day old, 60-, 180-day old) using immunohistochemical methods. The results obtained indicate that the majority of the afferent neurons in the nodose ganglion of vagus nerve (GNVN) and in the spinal ganglia (SG) were TRPV1-positive from birth onwards. The percentage of neurons containing TRPVT receptors in SG slightly increased with age up to 30 days postnatally. In the GNVN, the percentage of TRPV1-positive neurons was higher in comparison with the SG in all age groups. The vast majority of the sympathetic neurons were TRPV1-positive from birth onwards, and the percentage of TRPV1-immunoreactive neurons substantially decreased during further development. In 20-day old and older animals, we observed only few TRPV1-immunoreactive neurons in sympathetic ganglia. Finally, the percentage of neurons containing these types of neurons, become similar to adult animals to the end of the first month of life.  相似文献   

12.
The present study reports the results of physiological and anatomical experiments in which the purpose was to determine whether desheathing the nodose ganglion is a reliable method of vagal de-efferentation in the ferret. In physiological studies, the effects of electrically stimulating the treated and untreated vagal nerves on cardiovascular and intestinal responses were examined and compared with previously obtained data after left supranodose vagotomy. The anatomical studies illustrated the effects of desheathing the left nodose ganglion on the transport of horseradish peroxidase (HRP) within a thoracic vagal communicating branch. These data were compared to data from control animals and animals that had undergone left supranodose vagotomy. The results demonstrated that severing the fascicles overlying the left nodose ganglion and allowing the nerve fibers to degenerate, caused no reduction in labeled efferent cell bodies in the left dorsal motor nucleus of the vagus as compared to controls. However, after left supranodose vagotomy there were no efferent cell bodies labeled in the left dorsal motor nucleus of the vagus. Following degeneration of the fascicles, electrical stimulation of the peripheral cut end of this nerve did not abolish the efferent responses in 7 out of 9 animals studied, whereas supranodose vagotomy abolished the responses in all animals. These findings demonstrate that desheathing the nodose ganglion and thereby removing the nerve bundles overlying the nodose ganglion is not a guaranteed method of destroying the efferent fibers in the vagus nerve of the ferret. Supranodose vagotomy, therefore, is a more reliable method of de-efferentation in this species.  相似文献   

13.
The hypothesis that respiratory reflexes, such as cough, reflect the net and often opposing effects of activation of multiple afferent nerve subpopulations throughout the airways was evaluated. Laryngeal and tracheal mucosal challenge with either citric acid or mechanical probing reliably evoked coughing in anesthetized guinea pigs. No other stimulus reliably evoked coughing in these animals, regardless of route of administration and despite some profound effects on respiration. Selectively activating vagal C-fibers arising from the nodose ganglia with either adenosine or 2-methyl-5-HT evoked only tachypnea. Selectively activating vagal afferents arising from the jugular ganglia induced respiratory slowing and apnea. Nasal afferent nerve activation by capsaicin, citric acid, hypertonic saline, or histamine evoked only respiratory slowing. Histamine, which activates intrapulmonary rapidly adapting receptors but not airway or lung C-fibers or tracheal bronchial cough receptors induced bronchospasm and tachypnea, but no coughing. The results indicate that the reflexes initiated by stimuli thought to be selective for some afferent nerve subtypes will likely depend on the net and potentially opposing effects of multiple afferent nerve subpopulations throughout the airways. The data also provide further evidence that the afferent nerves regulating cough in anesthetized guinea pigs are distinct from either C-fibers or intrapulmonary rapidly adapting receptors.  相似文献   

14.
Levels of cyclic nucleotides and ornithine decarboxylase (ODC) activity were examined following the application of various kinds of stimuli to superior cervical sympathetic ganglia (SCG), nodose ganglia, and vagus nerve fibers excised from the rat. The level of cyclic GMP in the SCG rose rapidly to about 4.5- to 7.5-fold the unstimulated control with 10 min of incubation after applications of preganglionic electrical stimulation (10 Hz), acetylcholine (ACh; 1 mM), or high extracellular K+ ( [K+]0, 70 mM). The cyclic GMP level in nodose ganglia was increased less than in the SCG by either ACh or high [K+]0 but was not affected by ACh in vagus fibers. Cyclic AMP in the SCG was also increased about 4- to 5.5-fold over the control within 10 min with the addition of ACh, norepinephrine (NE; 0.05 mM), or high [K+]0. Although NE caused a small increase in cyclic AMP, neither ACh nor high [K+]0 produced any appreciable change in nodose ganglia or vagus fibers. The ODC activity in the SCG was increased by preganglionic stimulation of 3- to 4-hr duration but not by a shorter period. A similar change in ODC activity was caused by the addition of oxotremorine (1 mM), isoproterenol (0.1 mM), NE, cyclic AMP (1 mM), or dibutyryl cyclic GMP (1 mM). The effect was exaggerated by the further addition of 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. The increase in ODC activity caused by ACh was abolished by a muscarinic cholinergic antagonist, atropine (0.01 mM), and following axotomy for a week, but not by a nicotinic antagonist or by denervation in the SCG. A similar increase in ganglionic ODC activity by NE was inhibited by an adrenergic blocker, propranolol (0.01 mM), and following axtotomy for a week, but not by denervation. Cholinergic or adrenergic stimulation did not cause an increase in ODC activity in nodose ganglia or vagus fibers. These results suggest that the stimulation-induced increase in ODC activity occurs in postganglionic neurons rather than in satellite glial cells and is mediated by muscarinic cholinergic or adrenergic receptors. The process appears to involve cyclic nucleotide-mediated protein biosynthesis in the SCG.  相似文献   

15.
16.
To investigate extrinsic origins of calcitonin gene-related peptide immunoreactive (CGRP-IR) nerve fibres in the sheep ileum, the retrograde fluorescent tracer Fast Blue (FB) was injected into the ileum wall. Sections of thoraco-lumbar dorsal root ganglia (DRG) and distal (nodose) vagal ganglia showing FB-labelled neurons were processed for CGRP immunohistochemistry. The distribution of CGRP-IR in fibres and nerve cell bodies in the ileum was also studied. CGRP-IR enteric neurons were morphometrically analysed in myenteric (MP) and submucosal plexuses (SMP) of lambs (2–4 months). Sensory neurons retrogradely labelled with FB were scattered in T5-L4 DRG but most were located at the upper lumbar levels (L1-L3); only a minor component of the extrinsic afferent innervation of the ileum was derived from nodose ganglia. In the DRG, 57% of retrogradely labelled neurons were also CGRP-IR. In cryostat sections, a dense network of CGRP-IR fibres was observed in the lamina propria beneath the epithelium, around the lacteals and lymphatic follicles (Peyer's platches), and along and around enteric blood vessels. Rare CGRP-IR fibres were also present in both muscle layers. Dense pericellular baskets of CGRP-IR fibres were observed around CGRP-negative somata. The only CGRP-IR nerve cells were well-defined Dogiel type II neurons localised in the MP and in the external and internal components of the SMP. CGRP-IR neurons in the myenteric ganglia were significantly larger than those in the submucosal ganglia (mean profile areas: about 1,400 μm2 for myenteric neurons, 750 μm2 for submucosal neurons). About 6% of myenteric neurons and 25% of submucosal neurons were CGRP-IR Dogiel type II neurons. The percentages of CGRP-IR neurons that were also tachykinin-IR were about 9% (MP) and 42% (SMP), whereas no CGRP-IR neurons exhibited immunoreactivity for vasoactive intestinal peptide, nitric oxide synthase or tyrosine hydroxylase in either plexus. Thus, CGRP immunoreactivity occurs in the enteric nervous system of the sheep ileum (as in human small intestine and MP of pig ileum) in only one morphologically defined type of neuron, Dogiel type II cells. These are probably intrinsic primary afferent neurons. This work was supported by grants from the Ricerca Fondamentale Orientata (RFO) and Fondazione Del Monte di Bo e Ra.  相似文献   

17.
The crucial role of the liver as the only organ to produce glucose used by skeletal muscle during exercise is well known. Since hepatic glucose production is central to blood glucose homeostasis during exercise, it has been postulated that the liver may inform the central nervous system and other organs of its diminishing capacity to produce glucose from glycogen, before blood glucose falls. The sensory role of the liver during exercise would be similar to its role in the control of food intake. As a consequence, the experimental approaches used to test the hypothesis that afferent signals from the liver contribute to metabolic regulation during exercise are inspired by those used to test the same hypothesis in the regulation of food intake. In the present review, two questions are addressed. The existing evidence for the liver's sensory influence on metabolic adjustments to exercise is first reviewed; the nature of the initiating stimuli for the afferent contribution of the liver to physical exercise is discussed thereafter. The hypothetical construct upon which rests the contribution of the liver's afferent signals to metabolic regulation during exercise is that a decrease in liver glycogen or a related metabolic intermediate is sensed by the liver, and the signal is transduced to the central nervous system, most likely through the afferent activity of the hepatic vagus nerve, where it contributes to the orchestration of the metabolic and hormonal responses to exercise. Support in favour of this construct comes mainly from the demonstration that sectioning of the hepatic vagus nerve attenuates the normal hormonal response to exercise. It seems that the liver-glucagon axis is particularly responsive to this reflex activation. In other respects, the hepatic mechanism responsible for linking the metabolic activity in the liver to an afferent signal capable of regulating the metabolic response to exercise remains speculative. Substrates or derivatives of substrate oxidation, energy-related compounds (ATP and Pi), or changes in cell volume may all be related to changes in transmembrane potential in the liver cell, which according to the "potentiostatic" theory would determine the afferent vagal activity.  相似文献   

18.
The aim of this study was to investigate the reinnervation of gastric vagus nerves after lesser curvature and fundus myotomy (LCFM) in cats. After injection of the retrogradely tracing agent horseradish peroxidase (HRP) into the stomach wall along the predicted line of LCFM, the neuronal cell bodies of the afferent and efferent fibers were well-defined in both the nodose ganglia (NG) and dorsal motor nucleus of the vagus nerve (DMNx), respectively. The animals were divided into three subgroups. After LCFM, at intervals of 0 day, 2, 4, 6, 8, 10 and 12 weeks, respectively, they were processed for a HRP histochemical study in both subgroups A and B. In subgroup A, HRP was directly injected into both sides of the stomach wall distal to the dissecting plane of LCFM. A further corpoantral circumferential myotomy (CACM) was performed in subgroup B to eliminate the possibility of collateral sprouting via antropyloric vagus innervation before applying HRP to the same sites as those of subgroup A. Both LCFM and CACM with an overlapping suture were performed in subgroup C, and HRP was then injected into sites similar to those of subgroup A on the twelfth postoperative week. HRP-labeled cells were found in the NG on the sixth week and in the DMNx on the eighth week in subgroups A and B. The labeled cells increased in number until the twelfth week in both subgroups A and B. However, cells found in subgroup A were always more numerous than those found in subgroup B in both the NG and DMNx at equivalent time intervals. No labeled cell was found in the NG or DMNx in subgroup C during the 12 week study period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Peripheral cranial sensory nerves projecting into the oral cavity receive food intake stimuli and transmit sensory signals to the central nervous system. They are derived from four cranial sensory ganglia, trigeminal, geniculate, petrosal, and nodose ganglia, each of which contains multiple kinds of sensory neurons with different cell morphologies and neuronal properties. We investigated the complex properties of these neurons from the viewpoint of gene expression using DNA microarrays. The 498 genes were selected from a total of 8,740 genes as showing tissue-dependent expression on the microarray by hierarchical cluster analysis, in which several genes known to be differentially expressed in cranial sensory ganglia are included. This suggests that DNA microarray cluster analysis revealed a number of characteristic genes for sensory neurons in these ganglia. Among the selected 498 genes, 44 genes are associated with neurotransmission, such as neuropeptides, their receptors, and vesicle transport, and 26 are ion channels regulating membrane potentials. The identification of a number of genes related directly to neural properties indicates that these sensory ganglia contain heterogeneous types of neurons with different neural properties.  相似文献   

20.
Clinical studies implicate adenosine acting on esophageal nociceptive pathways in the pathogenesis of noncardiac chest pain originating from the esophagus. However, the effect of adenosine on esophageal afferent nerve subtypes is incompletely understood. We addressed the hypothesis that adenosine selectively activates esophageal nociceptors. Whole cell perforated patch-clamp recordings and single-cell RT-PCR analysis were performed on the primary afferent neurons retrogradely labeled from the esophagus in the guinea pig. Extracellular recordings were made from the isolated innervated esophagus. In patch-clamp studies, adenosine evoked activation (inward current) in a majority of putative nociceptive (capsaicin-sensitive) vagal nodose, vagal jugular, and spinal dorsal root ganglia (DRG) neurons innervating the esophagus. Single-cell RT-PCR analysis indicated that the majority of the putative nociceptive (transient receptor potential V1-positive) neurons innervating the esophagus express the adenosine receptors. The neural crest-derived (spinal DRG and vagal jugular) esophageal nociceptors expressed predominantly the adenosine A(1) receptor while the placodes-derived vagal nodose nociceptors expressed the adenosine A(1) and/or A(2A) receptors. Consistent with the studies in the cell bodies, adenosine evoked activation (overt action potential discharge) in esophageal nociceptive nerve terminals. Furthermore, the neural crest-derived jugular nociceptors were activated by the selective A(1) receptor agonist CCPA, and the placodes-derived nodose nociceptors were activated by CCPA and/or the selective adenosine A(2A) receptor CGS-21680. In contrast to esophageal nociceptors, adenosine failed to stimulate the vagal esophageal low-threshold (tension) mechanosensors. We conclude that adenosine selectively activates esophageal nociceptors. Our data indicate that the esophageal neural crest-derived nociceptors can be activated via the adenosine A(1) receptor while the placodes-derived esophageal nociceptors can be activated via A(1) and/or A(2A) receptors. Direct activation of esophageal nociceptors via adenosine receptors may contribute to the symptoms in esophageal diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号