首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many neurodegenerative diseases and particularly in Parkinson’s disease, deficits in olfaction are reported to occur early in the disease process and may be a useful behavioral marker for early detection. Earlier detection in neurodegenerative disease is a major goal in the field because this is when neuroprotective therapies have the best potential to be effective. Therefore, in preclinical studies testing novel neuroprotective strategies in rodent models of neurodegenerative disease, olfactory assessment could be highly useful in determining therapeutic potential of compounds and translation to the clinic. In the present study we describe a battery of olfactory assays that are useful in measuring olfactory function in mice. The tests presented in this study were chosen because they measure olfaction abilities in mice related to food odors, social odors, and non-social odors. These tests have proven useful in characterizing novel genetic mouse models of Parkinson’s disease as well as in testing potential disease-modifying therapies.  相似文献   

2.
Ca2+ blockers, particularly those capable of crossing the blood-brain barrier (BBB), have been suggested as a possible treatment or disease modifying agents for neurodegenerative disorders, e.g., Alzheimer’s disease. The present study investigated the effects of a novel 4-(N-dodecyl) pyridinium group-containing 1,4-dihydropyridine derivative (AP-12) on cognition and synaptic protein expression in the brain. Treatment of AP-12 was investigated in wild type C57BL/6J mice and transgenic Alzheimer’s disease model mice (Tg APPSweDI) using behavioral tests and immunohistochemistry, as well as mass spectrometry to assess the blood-brain barrier (BBB) penetration. The data demonstrated the ability of AP-12 to cross the BBB, improve spatial learning and memory in both mice strains, induce anxiolytic action in transgenic mice, and increase expression of hippocampal and cortical proteins (GAD67, Homer-1) related to synaptic plasticity. The compound AP-12 can be seen as a prototype molecule for use in the design of novel drugs useful to halt progression of clinical symptoms (more specifically, anxiety and decline in memory) of neurodegenerative diseases, particularly Alzheimer’s disease.  相似文献   

3.
Evidence that terrestrial gastropods are able to detect chemical cues from their predators is obvious yet scarce, despite the scientific relevance of the topic to enhancing our knowledge in this area. This study examines the influence of cuticular extracts from predacious ground beetles (Carabus auratus, Carabus hispanus, Carabus nemoralis and Carabus coriaceus), and a neutral insect species (Musca domestica) on the shelter-seeking behavior of naive slugs (Deroceras reticulatum). Slugs, known to have a negative phototactic response, were exposed to light, prompting them to make a choice between either a shelter treated with a cuticular extract or a control shelter treated with pure ethyl alcohol. Their behavioral responses were recorded for one hour in order to determine their first shelter choice, their final position, and to compare the percentage of time spent in the control shelters with the time spent in the treated shelters.The test proved to be very effective: slugs spent most of the experiment in a shelter. They spent significantly more time in the control shelter than in the shelter treated with either C. nemoralis (Z = 2.43; p = 0.0151; Wilcoxon matched-pairs signed-ranks test) or C. coriaceus cuticular extracts (Z = 3.31; p<0.01; Wilcoxon matched-pairs signed-ranks test), with a seemingly stronger avoidance effect when presented with C. coriaceus extracts. The other cuticular extracts had no significant effect on any of the behavioral items measured. Although it cannot be entirely excluded that the differences observed, are partly due to the intrinsic properties of the vehicle employed to build the cuticular extracts, the results suggest that slugs can innately discriminate amongst different potential predators and adjust their behavioral response according to the relevance of the threat conveyed by their predator’s chemical cues.  相似文献   

4.
Enhancing laboratory animal welfare, particularly in rodents, has been achieved through environmental enrichment in caging systems. Traditional enrichment such as adding objects has shown to impact development, reproductive and maternal performance as well as cognition. However, effects of increased spatial complexity as part of larger novel caging systems have not been investigated. While adoption of caging systems with increased spatial complexity seems uncontroversial from a welfare perspective, effects of such housing on the development and task performance of experimental animals remains unclear. In this study, we investigate differences in key behaviours and cognitive performance between Lister Hooded rats housed in traditional (single-shelf) cages (‘basic’) and those housed in larger cages with an additional shelf (‘enriched’). We found minor differences in maternal behaviour, such as nursing and offspring development. Further, we compared task performance in females, using a hippocampus-dependent task (T-maze) and a hippocampus-independent task (Novel Object Recognition, NOR). While in the T-maze no differences in either the rate of learning or probe trial performance were found, in the NOR task females housed in enriched cages performed better than those housed in basic cages. Our results show that increased spatial complexity does not significantly affect development and maternal performance but may enhance learning in females for a non-spatial task. Increased spatial complexity does not appear to have the same effects on behaviour and development as traditional enrichment. Thus, our results suggest no effect of housing conditions on the development of most behaviours in experimental animals housed in spatially enriched caging systems.  相似文献   

5.
The development of the explicit recognition of facial expressions of emotions can be affected by childhood maltreatment experiences. A previous study demonstrated the existence of an explicit recognition bias for angry facial expressions among a population of adolescent Sierra Leonean street-boys exposed to high levels of maltreatment. In the present study, the recognition bias for angry facial expressions was investigated in a younger population of street-children and age-matched controls. Participants performed a forced-choice facial expressions recognition task. Recognition bias was measured as participants’ tendency to over-attribute anger label to other negative facial expressions. Participants’ heart rate was assessed and related to their behavioral performance, as index of their stress-related physiological responses. Results demonstrated the presence of a recognition bias for angry facial expressions among street-children, also pinpointing a similar, although significantly less pronounced, tendency among controls. Participants’ performance was controlled for age, cognitive and educational levels and for naming skills. None of these variables influenced the recognition bias for angry facial expressions. Differently, a significant effect of heart rate on participants’ tendency to use anger label was evidenced. Taken together, these results suggest that childhood exposure to maltreatment experiences amplifies children’s “pre-existing bias” for anger labeling in forced-choice emotion recognition task. Moreover, they strengthen the thesis according to which the recognition bias for angry facial expressions is a manifestation of a functional adaptive mechanism that tunes victim’s perceptive and attentive focus on salient environmental social stimuli.  相似文献   

6.
Environmental enrichment (EE) is a housing environment for mice that boosts mental and physical health compared to standard laboratory housing. Our recent studies demonstrate that environmental enrichment decreases adiposity, increases energy expenditure, resists diet induced obesity, and causes cancer remission and inhibition in mice. EE typically consists of larger living space, a variety of ‘toys’ to interact with, running wheels, and can include a number of other novel environmental changes. All of this fosters a more complex social engagement, cognitive and physical stimulations. Importantly, the toy location and type of toy is changed regularly, which encourages the mice to adapt to a frequently changing and novel environment. Many variables can be manipulated in EE to promote health effects in mice. Thus these approaches are difficult to control and must be properly managed to successfully replicate the associated phenotypes. Therefore, the goal of this video is to demonstrate how EE is properly set up and maintained to assure a complex, challenging, and controlled environment so that other researchers can easily reproduce the protective effects of EE against obesity and cancer.  相似文献   

7.
Executive functions consist of multiple high-level cognitive processes that drive rule generation and behavioral selection. An emergent property of these processes is the ability to adjust behavior in response to changes in one’s environment (i.e., behavioral flexibility). These processes are essential to normal human behavior, and may be disrupted in diverse neuropsychiatric conditions, including schizophrenia, alcoholism, depression, stroke, and Alzheimer’s disease. Understanding of the neurobiology of executive functions has been greatly advanced by the availability of animal tasks for assessing discrete components of behavioral flexibility, particularly strategy shifting and reversal learning. While several types of tasks have been developed, most are non-automated, labor intensive, and allow testing of only one animal at a time. The recent development of automated, operant-based tasks for assessing behavioral flexibility streamlines testing, standardizes stimulus presentation and data recording, and dramatically improves throughput. Here, we describe automated strategy shifting and reversal tasks, using operant chambers controlled by custom written software programs. Using these tasks, we have shown that the medial prefrontal cortex governs strategy shifting but not reversal learning in the rat, similar to the dissociation observed in humans. Moreover, animals with a neonatal hippocampal lesion, a neurodevelopmental model of schizophrenia, are selectively impaired on the strategy shifting task but not the reversal task. The strategy shifting task also allows the identification of separate types of performance errors, each of which is attributable to distinct neural substrates. The availability of these automated tasks, and the evidence supporting the dissociable contributions of separate prefrontal areas, makes them particularly well-suited assays for the investigation of basic neurobiological processes as well as drug discovery and screening in disease models.  相似文献   

8.
This protocol describes the modified hole board (mHB), which combines features from a traditional hole board and open field and is designed to measure multiple dimensions of unconditioned behavior in small laboratory mammals (e.g., mice, rats, tree shrews and small primates). This paradigm is a valuable alternative for the use of a behavioral test battery, since a broad behavioral spectrum of an animal’s behavioral profile can be investigated in one single test.The apparatus consists of a box, representing the ‘protected’ area, separated from a group compartment. A board, on which small cylinders are staggered in three lines, is placed in the center of the box, representing the ‘unprotected’ area of the set-up. The cognitive abilities of the animals can be measured by baiting some cylinders on the board and measuring the working and reference memory. Other unconditioned behavior, such as activity-related-, anxiety-related- and social behavior, can be observed using this paradigm. Behavioral flexibility and the ability to habituate to a novel environment can additionally be observed by subjecting the animals to multiple trials in the mHB, revealing insight into the animals’ adaptive capacities.Due to testing order effects in a behavioral test battery, naïve animals should be used for each individual experiment. By testing multiple behavioral dimensions in a single paradigm and thereby circumventing this issue, the number of experimental animals used is reduced. Furthermore, by avoiding social isolation during testing and without the need to food deprive the animals, the mHB represents a behavioral test system, inducing if any, very low amount of stress.  相似文献   

9.
Astrocytes contribute to the maintenance of the health and function of the central nervous system (CNS). Thus, it is not surprising that these multifunctional cells have been implicated in the onset and progression of several neurodegenerative diseases. The involvement of astrocytes in the neuropathology of these diseases is likely a consequence of both the loss of normal homeostatic functions and gain of toxic functions. Intracellular aggregates in astrocytes are a common feature of various neurodegenerative diseases, and these aggregates perturb normal astrocytic functions in ways that can be harmful to neuronal viability. Here, we review the role of astrocytes in neurodegenerative diseases, focusing on their dysfunction in Huntington’s disease (HD), Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS).  相似文献   

10.

Background

A considerable number of bariatric patients report poor long-term weight loss after Roux-en-Y gastric bypass (RYGB) surgery. One possibility for an underlying cause is an impairment of cognitive control that impedes this patient group’s dietary efforts.

Objective

To investigate if patients having either poor or good weight loss response, ~12 years after RYGB-surgery, differ in their ability to inhibit prepotent responses when processing food cues during attentional operations—as measure of cognitive control.

Methods

In terms of weight loss following RYGB-surgery, 15 ‘poor responders’ and 15 ‘good responders’, matched for gender, age, education, preoperative body mass index, and years since surgery, were administered two tasks that measure sustained attention and response control: a go/no-go task and a Stroop interference task; both of which are associated with maladaptive eating behaviours.

Results

The poor responders (vs. good responders) needed significantly more time when conducting a go/no-go task (603±134 vs. 519±44 msec, p = 0.03), but the number of errors did not differ between groups. When conducting a Stroop interference task, poor responders read fewer inks than good responders (68±16 vs. 85±10 words, p = 0.002).

Conclusion

Patients lacking sustainable weight loss after RYGB-surgery showed poorer inhibitory control than patients that successfully lost weight. In the authors’ view, these results suggest that cognitive behavioral therapies post-RYGB-surgery may represent a promising behavioral adjuvant to achieve sustainable weight loss in patients undergoing this procedure. Future studies should examine whether these control deficits in poor responders are food-specific or not.  相似文献   

11.
Alzheimer’s disease is the most common age-related neurodegenerative disorder. Familial forms of Alzheimer’s disease associated with the accumulation of a toxic form of amyloid-β (Aβ) peptides are linked to mitochondrial impairment. The coenzyme nicotinamide adenine dinucleotide (NAD+) is essential for both mitochondrial bioenergetics and nuclear DNA repair through NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Here we analysed the metabolomic changes in flies overexpressing Aβ and showed a decrease of metabolites associated with nicotinate and nicotinamide metabolism, which is critical for mitochondrial function in neurons. We show that increasing the bioavailability of NAD+ protects against Aβ toxicity. Pharmacological supplementation using NAM, a form of vitamin B that acts as a precursor for NAD+ or a genetic mutation of PARP rescues mitochondrial defects, protects neurons against degeneration and reduces behavioural impairments in a fly model of Alzheimer’s disease. Next, we looked at links between PARP polymorphisms and vitamin B intake in patients with Alzheimer’s disease. We show that polymorphisms in the human PARP1 gene or the intake of vitamin B are associated with a decrease in the risk and severity of Alzheimer’s disease. We suggest that enhancing the availability of NAD+ by either vitamin B supplements or the inhibition of NAD+-dependent enzymes such as PARPs are potential therapies for Alzheimer’s disease.Subject terms: Metabolomics, Cell death in the nervous system, Alzheimer''s disease  相似文献   

12.
13.
A common signature of marine invasions worldwide is a significant loss of parasites (= parasite escape) in non-native host populations, which may confer a release from some of the harmful effects of parasitism (e.g., castration, energy extraction, immune activation, behavioral manipulation) and possibly enhance the success of non-indigenous species. In eastern North America, the notorious invader Carcinus maenas (European green crab) has escaped more than two-thirds its native parasite load. However, one of its parasites, a trematode (Microphallus similis), can be highly prevalent in the non-native region; yet little is known about its potential impacts. We employed a series of laboratory experiments to determine whether and how M. similis infection intensity influences C. maenas, focusing on physiological assays of body mass index, energy storage, and immune activation, as well as behavioral analyses of foraging, shelter utilization, and conspicuousness. We found little evidence for enduring physiological or behavioral impacts four weeks after experimental infection, with the exception of mussel handling time which positively correlated with cyst intensity. However, we did find evidence for a short-term effect of M. similis infection during early stages of infection (soon after cercarial penetration) via a significant drop in circulating immune cells, and a significant increase in the crabs’ righting response time. Considering M. similis is the only common parasite infecting C. maenas in eastern North America, our results for minimal lasting effects of the trematode on the crab’s physiology and behavior may help explain the crab’s continued prominence as a strong predator and competitor in the region.  相似文献   

14.
Parkinson’s disease (PD) is a complex neurodegenerative disorder influenced by a combination of genetic and environmental factors. The molecular mechanisms that underlie PD are unknown; however, oxidative stress and impairment of antioxidant defence mechanisms have been implicated as major contributors to disease pathogenesis. Previously, we have reported a PD patient-derived cellular model generated from biopsies of the olfactory mucosa, termed hONS cells, in which the NRF2-mediated antioxidant response pathway genes were among the most differentially-expressed. To date, few studies have examined the role of the NRF2 encoding gene, NFE2L2, and PD. In this study, we comprehensibly assessed whether rare and common NFE2L2 genetic variations modify susceptibility to PD using a large Australian case-control sample (PD=1338, controls=1379). We employed a haplotype-tagging approach that identified an association with the tagging SNP rs2364725 and PD (OR = 0.849 (0.760-0.948), P = 0.004). Further genetic screening in hONS cell lines produced no obvious pathogenic variants in the coding regions of NFE2L2. Finally, we investigated the relationship between xenobiotic exposures and NRF2 function, through gene-environment interactions, between NFE2L2 SNPs and smoking or pesticide exposure. Our results demonstrated a significant interaction between rs2706110 and pesticide exposure (OR = 0.597 (0.393-0.900), P = 0.014). In addition, we were able to identify some age-at-onset modifying SNPs and replicate an ‘early-onset’ haplotype that contains a previously identified ‘functional promoter’ SNP (rs6721961). Our results suggest a role of NFE2L2 genetic variants in modifying PD susceptibility and onset. Our findings also support the utility of testing gene-environment interactions in genetic studies of PD.  相似文献   

15.
Working as a firefighter is physically strenuous, and a high level of physical fitness increases a firefighter’s ability to cope with the physical stress of their profession. Direct measurements of aerobic capacity, however, are often complicated, time consuming, and expensive. The first aim of the present study was to evaluate the correlations between direct (laboratory) and indirect (field) aerobic capacity tests with common and physically demanding firefighting tasks. The second aim was to give recommendations as to which field tests may be the most useful for evaluating firefighters’ aerobic work capacity. A total of 38 subjects (26 men and 12 women) were included. Two aerobic capacity tests, six field tests, and seven firefighting tasks were performed. Lactate threshold and onset of blood lactate accumulation were found to be correlated to the performance of one work task (rs = −0.65 and −0.63, p<0.01, respectively). Absolute (mL·min−1) and relative (mL·kg−1·min−1) maximal aerobic capacity was correlated to all but one of the work tasks (rs = −0.79 to 0.55 and −0.74 to 0.47, p<0.01, respectively). Aerobic capacity is important for firefighters’ work performance, and we have concluded that the time to row 500 m, the time to run 3000 m relative to body weight (s·kg−1), and the percent of maximal heart rate achieved during treadmill walking are the most valid field tests for evaluating a firefighter’s aerobic work capacity.  相似文献   

16.
Parkinson’s disease (PD) is a neurodegenerative disorder primarily characterized by progressive loss of dopamine neurons, leading to loss of motor coordination. However, PD is associated with a high rate of non-motor neuropsychiatric comorbities that often develop before the onset of movement symptoms. The MitoPark transgenic mouse model is the first to recapitulate the cardinal clinical features, namely progressive neurodegeneration and death of neurons, loss of motor function and therapeutic response to L-DOPA. To investigate whether MitoPark mice exhibit early onset of cognitive impairment, a non-motor neuropsychiatric comorbidity, we measured performance on a spatial learning and memory task before (∼8 weeks) or after (∼20 weeks) the onset of locomotor decline in MitoPark mice or in littermate controls. Consistent with previous studies, we established that a progressive loss of spontaneous locomotor activity began at 12 weeks of age, which was followed by progressive loss of body weight beginning at 16–20 weeks. Spatial learning and memory was measured using the Barnes Maze. By 20 weeks of age, MitoPark mice displayed a substantial reduction in overall locomotor activity that impaired their ability to perform the task. However, in the 8-week-old mice, locomotor activity was no different between genotypes, yet MitoPark mice took longer, traveled further and committed more errors than same age control mice, while learning to successfully navigate the maze. The modest between-day learning deficit of MitoPark mice was characterized by impaired within-day learning during the first two days of testing. No difference was observed between genotypes during probe trials conducted one or twelve days after the final acquisition test. Additionally, 8-week-old MitoPark mice exhibited impaired novel object recognition when compared to control mice. Together, these data establish that mild cognitive impairment precedes the loss of motor function in a novel rodent model of PD, which may provide unique opportunities for therapeutic development.  相似文献   

17.
The retest effect—improvement of performance on second exposure to a task—may impede the detection of cognitive decline in clinical trials for neurodegenerative diseases. We assessed the impact of the retest effect in Huntington’s disease trials, and investigated its possible neutralization. We enrolled 54 patients in the Multicentric Intracerebral Grafting in Huntington’s Disease (MIG-HD) trial and 39 in the placebo arm of the Riluzole trial in Huntington’s Disease (RIL-HD). All were assessed with the Unified Huntington’s Disease Rating Scale (UHDRS) plus additional cognitive tasks at baseline (A1), shortly after baseline (A2) and one year later (A3). We used paired t-tests to analyze the retest effect between A1 and A2. For each task of the MIG-HD study, we used a stepwise algorithm to design models predictive of patient performance at A3, which we applied to the RIL-HD trial for external validation. We observed a retest effect in most cognitive tasks. A decline in performance at one year was detected in 3 of the 15 cognitive tasks with A1 as the baseline, and 9 of the 15 cognitive tasks with A2 as the baseline. We also included the retest effect in performance modeling and showed that it facilitated performance prediction one year later for 14 of the 15 cognitive tasks. The retest effect may mask cognitive decline in patients with neurodegenerative diseases. The dual baseline can improve clinical trial design, and better prediction should homogenize patient groups, resulting in smaller numbers of participants being required.  相似文献   

18.
Perception is often characterized computationally as an inference process in which uncertain or ambiguous sensory inputs are combined with prior expectations. Although behavioral studies have shown that observers can change their prior expectations in the context of a task, robust neural signatures of task-specific priors have been elusive. Here, we analytically derive such signatures under the general assumption that the responses of sensory neurons encode posterior beliefs that combine sensory inputs with task-specific expectations. Specifically, we derive predictions for the task-dependence of correlated neural variability and decision-related signals in sensory neurons. The qualitative aspects of our results are parameter-free and specific to the statistics of each task. The predictions for correlated variability also differ from predictions of classic feedforward models of sensory processing and are therefore a strong test of theories of hierarchical Bayesian inference in the brain. Importantly, we find that Bayesian learning predicts an increase in so-called “differential correlations” as the observer’s internal model learns the stimulus distribution, and the observer’s behavioral performance improves. This stands in contrast to classic feedforward encoding/decoding models of sensory processing, since such correlations are fundamentally information-limiting. We find support for our predictions in data from existing neurophysiological studies across a variety of tasks and brain areas. Finally, we show in simulation how measurements of sensory neural responses can reveal information about a subject’s internal beliefs about the task. Taken together, our results reinterpret task-dependent sources of neural covariability as signatures of Bayesian inference and provide new insights into their cause and their function.  相似文献   

19.
Prior to age four, children succeed in non-elicited-response false-belief tasks but fail elicited-response false-belief tasks. To explain this discrepancy, the processing-load account argues that the capacity to represent beliefs emerges in infancy, as indicated by early success on non-elicited-response tasks, but that children’s ability to demonstrate this capacity depends on the processing demands of the task and children’s processing skills. When processing demands exceed young children’s processing abilities, such as in standard elicited-response tasks, children fail despite their capacity to represent beliefs. Support for this account comes from recent evidence that reducing processing demands improves young children’s performance: when demands are sufficiently reduced, 2.5-year-olds succeed in elicited-response tasks. Here we sought complementary evidence for the processing-load account by examining whether increasing processing demands impeded children’s performance in a non-elicited-response task. 3-year-olds were tested in a preferential-looking task in which they heard a change-of-location false-belief story accompanied by a picture book; across children, we manipulated the amount of linguistic ambiguity in the story. The final page of the book showed two images: one that was consistent with the main character’s false belief and one that was consistent with reality. When the story was relatively unambiguous, children looked reliably longer at the false-belief-consistent image, successfully demonstrating their false-belief understanding. When the story was ambiguous, however, this undermined children’s performance: looking times to the belief-consistent image were correlated with verbal ability, and only children with verbal skills in the upper quartile of the sample demonstrated a significant preference for the belief-consistent image. These results support the processing-load account by demonstrating that regardless of whether a task involves an elicited response, children’s performance depends on the processing demands of the task and their processing skills. These findings also have implications for alternative, deflationary accounts of early false-belief understanding.  相似文献   

20.
We present a high-throughput optogenetic illumination system capable of simultaneous closed-loop light delivery to specified targets in populations of moving Caenorhabditis elegans. The instrument addresses three technical challenges: It delivers targeted illumination to specified regions of the animal’s body such as its head or tail; it automatically delivers stimuli triggered upon the animal’s behavior; and it achieves high throughput by targeting many animals simultaneously. The instrument was used to optogenetically probe the animal’s behavioral response to competing mechanosensory stimuli in the the anterior and posterior gentle touch receptor neurons. Responses to more than 43,418 stimulus events from a range of anterior–posterior intensity combinations were measured. The animal’s probability of sprinting forward in response to a mechanosensory stimulus depended on both the anterior and posterior stimulation intensity, while the probability of reversing depended primarily on the anterior stimulation intensity. We also probed the animal’s response to mechanosensory stimulation during the onset of turning, a relatively rare behavioral event, by delivering stimuli automatically when the animal began to turn. Using this closed-loop approach, over 9,700 stimulus events were delivered during turning onset at a rate of 9.2 events per worm hour, a greater than 25-fold increase in throughput compared to previous investigations. These measurements validate with greater statistical power previous findings that turning acts to gate mechanosensory evoked reversals. Compared to previous approaches, the current system offers targeted optogenetic stimulation to specific body regions or behaviors with many fold increases in throughput to better constrain quantitative models of sensorimotor processing.

This study resents a new targeted illumination method for the nematode Caenorhabditis elegans, allowing delivery of optogenetic stimulation to specific body parts of many animals at once, automatically triggered by the animals’ behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号