首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model of a chloroplast was constructed, which takes into account the inhomogeneous distribution of complexes of photosystems I and II between granal and intergranal thylakoids. The structural and functional complexes of photosystems I and II, which are localized in intergranal and granal thylakoids, respectively, and the b/f complex, which is uniformly distributed in thylakoid membranes, are assumed to be immobile. The interactions between spatially distant electron transport complexes are provided by plastoquinone and plastocyanine, which diffuse in the thylakoid membrane and intrathylakoid space, respectively. The main stages of proton transport associated with the functioning of photosystem II and oxidation-reduction transformations of plastoquinone are considered. The model takes into account the interactions of protons with membrane-bound buffer groups, the lateral diffusion of hydrogen ions in the intrathylakoid space and in the lumen between adjacent granal thylakoids, and the transmembrane proton transport associated with the function of ATP synthase and passive leakage of protons from thylakoids outside. The numerical integration of two systems of differential equations describing the behavior of some variables in two different regions: granal and intergranal thylakoids was performed. The model describes adequately the kinetics of processes being studied and predicts the occurrence of inhomogeneous lateral profiles of proton potentials and redox state of electron carriers. Modeling the electron and proton transport with allowance for the topological features of chloroplasts (lateral heterogeneity of thylakoids) is important for correct interpretation of "power-flux" interactions and the experimentally measured kinetic parameters averaged over the entire spatially inhomogeneous thylakoid system.  相似文献   

2.
Chloroplasts in plants and some green algae contain a continuous thylakoid membrane system that is structurally differentiated into stacked granal membranes interconnected by unstacked thylakoids, the stromal lamellae. Experiments were conducted to test the hypothesis that the thermodynamic tendency to increase entropy in chloroplasts contributes to thylakoid stacking to form grana. We show that the addition of bovine serum albumin or dextran, two very different water-soluble macromolecules, to a suspension of envelope-free chloroplasts with initially unstacked thylakoids induced thylakoid stacking. This novel restacking of thylakoids occurred spontaneously, accompanied by lateral segregation of PSII from PSI, thereby mimicking the natural situation. We suggest that such granal formation, induced by the macromolecules, is partly explained as a means of generating more volume for the diffusion of macromolecules in a crowded stromal environment, i.e., greater entropy overall. This mechanism may be relevant in vivo where the stroma has a very high concentration of enzymes of carbon metabolism, and where high metabolic fluxes are required.  相似文献   

3.
Eun-Ha Kim  Peter Horton 《BBA》2005,1708(2):187-195
Chloroplasts in plants and some green algae contain a continuous thylakoid membrane system that is structurally differentiated into stacked granal membranes interconnected by unstacked thylakoids, the stromal lamellae. Experiments were conducted to test the hypothesis that the thermodynamic tendency to increase entropy in chloroplasts contributes to thylakoid stacking to form grana. We show that the addition of bovine serum albumin or dextran, two very different water-soluble macromolecules, to a suspension of envelope-free chloroplasts with initially unstacked thylakoids induced thylakoid stacking. This novel restacking of thylakoids occurred spontaneously, accompanied by lateral segregation of PSII from PSI, thereby mimicking the natural situation. We suggest that such granal formation, induced by the macromolecules, is partly explained as a means of generating more volume for the diffusion of macromolecules in a crowded stromal environment, i.e., greater entropy overall. This mechanism may be relevant in vivo where the stroma has a very high concentration of enzymes of carbon metabolism, and where high metabolic fluxes are required.  相似文献   

4.
《BBA》2023,1864(3):148974
Photosynthetic conversion of light energy into chemical energy occurs in sheet-like membrane-bound compartments called thylakoids and is mediated by large integral membrane protein-pigment complexes called reaction centers (RCs). Oxygenic photosynthesis of higher plants, cyanobacteria and algae requires the symbiotic linking of two RCs, photosystem II (PSII) and photosystem I (PSI), to split water and assimilate carbon dioxide. Worldwide there is a large research investment in developing RC-based hybrids that utilize the highly evolved solar energy conversion capabilities of RCs to power catalytic reactions for solar fuel generation. Of particular interest is the solar-powered production of H2, a clean and renewable energy source that can replace carbon-based fossil fuels and help provide for ever-increasing global energy demands. Recently, we developed thylakoid membrane hybrids with abiotic catalysts and demonstrated that photosynthetic Z-scheme electron flow from the light-driven water oxidation at PSII can drive H2 production from PSI. One of these hybrid systems was created by self-assembling Pt-nanoparticles (PtNPs) with the stromal subunits of PSI that extend beyond the membrane plane in both spinach and cyanobacterial thylakoids. Using PtNPs as site-specific probe molecules, we report the electron microscopic (EM) imaging of oligomeric structure, location and organization of PSI in thylakoid membranes and provide the first direct visualization of photosynthetic Z-scheme solar water-splitting biohybrids for clean H2 production.  相似文献   

5.
The PsbS subunit of Photosystem II (PSII) has received much attention in the past few years, given its crucial role in photoprotection of higher plants. The exact location of this small subunit in thylakoids is also debated. In this work possible interaction partners of PsbS have been identified by immunoaffinity and immunoprecipitation, performed with mildly solubilized whole thylakoid membrane. The interacting proteins, as identified by mass spectrometry analysis of the immunoaffinity eluate, include CP29, some LHCII components, but also components of Photosystem I, of the cytochrome b6f complex as well as of ATP synthase. These proteins can be co-immunoprecipitated by using highly specific anti-PsbS antibodies and, vice-versa, PsbS is co-immunoprecipitated by antisera against components of the interacting complexes. We also find that PsbS co-migrates with bands containing PSII, ATP synthase and cytochrome b6f as well as with LHCII-containing bands on non-denaturing Deriphat PAGE. These results suggest multiple location of PsbS in the thylakoid membrane and point to an unexpected lateral mobility of this PSII subunit. As revealed by immunogold labelling with antibody against PsbS, the protein is associated either with granal membranes or prevalently with stroma lamellae in low or high-intensity light-treated intact leaves, respectively. This finding is consistent with the capability of PsbS to interact with complexes located in stroma lamellae, even though the exact physiological condition(s) under which these interactions may take place remain to be clarified.  相似文献   

6.
The PsbS subunit of Photosystem II (PSII) has received much attention in the past few years, given its crucial role in photoprotection of higher plants. The exact location of this small subunit in thylakoids is also debated. In this work possible interaction partners of PsbS have been identified by immunoaffinity and immunoprecipitation, performed with mildly solubilized whole thylakoid membrane. The interacting proteins, as identified by mass spectrometry analysis of the immunoaffinity eluate, include CP29, some LHCII components, but also components of Photosystem I, of the cytochrome b(6)f complex as well as of ATP synthase. These proteins can be co-immunoprecipitated by using highly specific anti-PsbS antibodies and, vice-versa, PsbS is co-immunoprecipitated by antisera against components of the interacting complexes. We also find that PsbS co-migrates with bands containing PSII, ATP synthase and cytochrome b(6)f as well as with LHCII-containing bands on non-denaturing Deriphat PAGE. These results suggest multiple location of PsbS in the thylakoid membrane and point to an unexpected lateral mobility of this PSII subunit. As revealed by immunogold labelling with antibody against PsbS, the protein is associated either with granal membranes or prevalently with stroma lamellae in low or high-intensity light-treated intact leaves, respectively. This finding is consistent with the capability of PsbS to interact with complexes located in stroma lamellae, even though the exact physiological condition(s) under which these interactions may take place remain to be clarified.  相似文献   

7.
The thylakoid membrane forms stacked thylakoids interconnected by ‘stromal’ lamellae. Little is known about the mobility of proteins within this system. We studied a stromal lamellae protein, Hcf106, by targeting an Hcf106-GFP fusion protein to the thylakoids and photobleaching. We find that even small regions fail to recover Hcf106-GFP fluorescence over periods of up to 3 min after photobleaching. The protein is thus either immobile within the thylakoid membrane, or its diffusion is tightly restricted within distinct regions. Autofluorescence from the photosystem II light-harvesting complex in the granal stacks likewise fails to recover. Integral membrane proteins within both the stromal and granal membranes are therefore highly constrained, possibly forming ‘microdomains’ that are sharply separated.  相似文献   

8.
ABSTRACT: BACKGROUND: The thylakoid system in plant chloroplasts is organized into two distinct domains: granaarranged in stacks of appressed membranes and non-appressed membranes consisting ofstroma thylakoids and margins of granal stacks. It is argued that the reason for thedevelopment of appressed membranes in plants is that their photosynthetic apparatus need tocope with and survive ever-changing environmental conditions. It is not known however,why different plant species have different arrangements of grana within their chloroplasts. Itis important to elucidate whether a different arrangement and distribution of appressed andnon-appressed thylakoids in chloroplasts are linked with different qualitative and/orquantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranesand whether this arrangement influences the photosynthetic efficiency. RESULTS: Our results from TEM and in situ CLSM strongly indicate the existence of differentarrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids areregularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, whileirregular appressed thylakoid membranes within bean chloroplasts correspond to smaller andless distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show adistinct spatial separation of stacked thylakoids from stromal spaces whereas spatial divisionof stroma and thylakoid areas in bean chloroplasts are more complex. Structural differencesinfluenced the PSII photochemistry, however without significant changes in photosyntheticefficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well asspectroscopic investigations indicated a similar proportion between PSI and PSII corecomplexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones.Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSIsupercomplexes between species are suggested. CONCLUSIONS: Based on proteomic and spectroscopic investigations we postulate that the differences in thechloroplast structure between the analyzed species are a consequence of quantitativeproportions between the individual CP complexes and its arrangement inside membranes.Such a structure of membranes induced the formation of large stacked domains in pea, orsmaller heterogeneous regions in bean thylakoids. Presented 3D models of chloroplasts showed that stacked areas are noticeably irregular with variable thickness, merging with eachother and not always parallel to each other.  相似文献   

9.
Green plant photosystem II (PSII) is involved in the light reactions of photosynthesis, which take place in the thylakoid membrane of the chloroplast. PSII is organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. These supercomplexes are dimeric and contain usually 2-4 copies of trimeric LHCII complexes and have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. This review focuses on the overall composition and structure of the PSII supercomplex of green plants and its organization and interactions within the photosynthetic membrane. Further, we present the current knowledge how the thylakoid membrane is three-dimensionally organized within the chloroplast. We also discuss how the supramolecular organization in the thylakoid membrane and the PSII flexibility may play roles in various short-term regulatory mechanisms of green plant photosynthesis. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

10.
Grana are not essential for photosynthesis, yet they are ubiquitous in higher plants and in the recently evolved Charaphyta algae; hence grana role and its need is still an intriguing enigma. This article discusses how the grana provide integrated and multifaceted functional advantages, by facilitating mechanisms that fine-tune the dynamics of the photosynthetic apparatus, with particular implications for photosystem II (PSII). This dynamic flexibility of photosynthetic membranes is advantageous in plants responding to ever-changing environmental conditions, from darkness or limiting light to saturating light and sustained or intermittent high light. The thylakoid dynamics are brought about by structural and organizational changes at the level of the overall height and number of granal stacks per chloroplast, molecular dynamics within the membrane itself, the partition gap between appressed membranes within stacks, the aqueous lumen encased by the continuous thylakoid membrane network, and even the stroma bathing the thylakoids. The structural and organizational changes of grana stacks in turn are driven by physicochemical forces, including entropy, at work in the chloroplast. In response to light, attractive van der Waals interactions and screening of electrostatic repulsion between appressed grana thylakoids across the partition gap and most probably direct protein interactions across the granal lumen (PSII extrinsic proteins OEEp-OEEp, particularly PsbQ-PsbQ) contribute to the integrity of grana stacks. We propose that both the light-induced contraction of the partition gap and the granal lumen elicit maximisation of entropy in the chloroplast stroma, thereby enhancing carbon fixation and chloroplast protein synthesizing capacity. This spatiotemporal dynamic flexibility in the structure and function of active and inactive PSIIs within grana stacks in higher plant chloroplasts is vital for the optimization of photosynthesis under a wide range of environmental and developmental conditions.  相似文献   

11.
1. CO2-depletion of thylakoid membranes results in a decrease of binding affinity of the Photosystem II (PS II) inhibitor atrazine. The inhibitory efficiency of atrazine, expressed as I50-concentration (50% inhibition) of 2,6-dichlorophenolindophenol reduction, is the same in CO2-depleted as well as in control thylakoids. This shows that CO2-depletion results in a complete inactivation of a part of the total number of electron transport chains. 2. A major site of action of CO2, which had previously been located between the two electron acceptor quinone molecule B (or R) and Photosystem II inhibitor atrazine as suggested by the following observations: (a) CO2-depletion results in a shift of the binding constant (kappa b) of [14C]atrazine to thylakoid membranes indicating a decreased affinity of atrazine to membrane; (b) trypsin treatment, which is known to modify the Photosystem II complex at the level of B, strongly diminishes CO2 stimulation of electron transport reactions in CO2-depleted membranes; and (c) thylakoids from atrazine-resistant plants, which contain a Photosystem II complex modified at the inhibitor binding site, show an altered CO2-stimulation of electron flow. 3. CO2-depletion does not produce structural changes in enzyme complexes involved in Photosystem II function of thylakoid membranes, as shown by freeze-fracture studies using electron microscopy.  相似文献   

12.
When wheat seedlings (Triticum vulgare cf HD 2189) were grown in the presence of BASF 13.338 (4-chloro-5-[dimethylamino]-2-phenyl-3[2H]-pyridazinone), there was a decrease in the ratio of linolenic acid to linoleic acid in the thylakoid membrane lipids (JB St John 1976 Plant Physiol 57: 38) and an increase in the ratio of photosystem II to photosystem I (RM Mannan, S Bose 1984 Photochem Photobiol 41: 63). Accompanying these gross structural changes were alterations in the cationic regulation of structure and functioning of the thylakoid membranes: (a) Mg2+-induced increase in the room temperature fluorescence was totally absent; (b) Mg2+-induced increase in absorbance at 560 nm, indicative of granal stacking, was slightly higher in thylakoids isolated from the BASF 13.338 treated plants suggesting an increased degree of stacking; and (c) absorption changes in the red and Soret regions of the absorption spectrum, normally resulting from the addition of divalent cation or alkyl anion, or from osmotic shrinkage were almost totally absent in thylakoid membranes isolated from BASF 13.338 treated plants. These observations have been interpreted in terms of: (a) significant alterations in the lipid matrix of the thylakoids from treated plants, (b) absence of cation-induced reorganization of the pigment-protein complexes in the horizontal plane of the treated thylakoid membranes suspended in low salt medium, and (c) absence of dynamic changes even within the individual pigment-protein complexes of treated thylakoids.  相似文献   

13.
In order to investigate membrane fluidity, the hydrophobic probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), has been incorporated into intact isolated thylakoids and separated granal and stromal lamellae obtained from the chloroplasts of Pisum sativum. The steady-state polarization of DPH fluorescence was measured as a function of temperature and indicated that at physiological values the thylakoid membrane is a relatively fluid system with the stromal lamellae being less viscous than the lamellae of the grana. According to the DPH technique, neither region of the membrane, however, showed a sharp phase transition of its bulk lipids from the liquid-crystalline to the gel state for the temperature range -20° to 50° C. Comparison of intact thylakoids isolated from plants grown at cold (4°/7°C) and warm (14°/17° C) temperatures indicate that there is an adaptation mechanism operating which seems to maintain an optimal membrane viscosity necessary for growth. Using a modified Perrin equation the optimal average viscosity for the thylakoid membrane of the chill-resistant variety used in the study (Feltham First) is estimated to be about 1.8 poise.Abbreviations DPH 1,6-diphenyl-1,3,5-hexatriene - Hepes N-(2-hydroxyethyl)-1-piperazineethanesulphonic acid  相似文献   

14.
Chloroplasts isolated from broad bean (Vicia faba) show major structural reorganisations on heating to temperatures above 35°C. Exposure to increasing temperatures in the range 35–45°;C for 5 min, leads to a progressive destacking of the chloroplast membranes and the replacement of the normal granal arrangement by modified thylakoid attachment sites. An analysis of the size and packing densities of the freeze-fracture particles present in different membrane fracture-faces suggests that this rearrangement reflects the dissociation of the light-harvesting units of Photosystem II. The antennae complexes of Photosystem II appear to cluster together, maintaining regions of membrane adhesion, whilst excluding the core-complexes of Photosystem II and light-harvesting units of Photosystem I from these regions. If the chloroplasts are heated to higher temperatures, 45–55°C, phase-separated aggregates of non-bilayer-forming lipids are often observed. The release of these lipids from their normal constraints within the bilayer is consistent with the idea that they play a role in the packaging of the light-harvesting complexes within the thylakoid membrane.  相似文献   

15.
The cytochrome b 6 f complex occupies a central position in photosynthetic electron transport and proton translocation by linking PS II to PS I in linear electron flow from water to NADP+, and around PS I for cyclic electron flow. Cytochrome b 6 f complexes are uniquely located in three membrane domains: the appressed granal membranes, the non-appressed stroma thylakoids and end grana membranes, and also the non-appressed grana margins, in contrast to the marked lateral heterogeneity of the localization of all other thylakoid multiprotein complexes. In addition to its vital role in vectorial electron transfer and proton translocation across the membrane, cytochrome b 6 f complex is also involved in the regulation of balanced light excitation energy distribution between the photosystems, since its redox state governs the activation of LHC II kinase (the kinase that phosphorylates the mobile peripheral fraction of the chlorophyll a/b-proteins of LHC II of PS II). Hence, cytochrome b 6 f complex is the molecular link in the interactive co-regulation of light-harvesting and electron transfer.The importance of a highly dynamic, yet flexible organization of the thylakoid membranes of plants and green algae has been highlighted by the exciting discovery that a lateral reorganization of some cytochrome b 6 f complexes occurs in the state transition mechanism both in vivo and in vitro (Vallon et al. 1991). The lateral redistribution of phosphorylated LHC II from stacked granal membrane regions is accompanied by a concomitant movement of some cytochrome b 6 f complexes from the granal membranes out to the PS I-containing stroma thylakoids. Thus, the dynamic movement of cytochrome b 6 f complex as a multiprotein complex is a molecular mechanism for short-term adaptation to changing light conditions. With the concept of different membrane domains for linear and cyclic electron flow gaining credence, it is thought that linear electron flow occurs in the granal compartments and cyclic electron flow is localised in the stroma thylakoids at non-limiting irradiances. It is postulated that dynamic lateral reversible redistribution of some cytochrome b 6 f complexes are part of the molecular mechanism involved in the regulation of linear electron transfer (ATP and NADPH) and cyclic electron flow (ATP only). Finally, the molecular significance of the marked regulation of cytochrome b 6 f complexes for long-term regulation and optimization of photosynthetic function under varying environmental conditions, particularly light acclimation, is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - PS Photosystem  相似文献   

16.
The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. PSI consists of a monomeric core complex with single copies of four different LHCI proteins and has binding sites for additional LHCI and/or LHCII complexes. PSII supercomplexes are dimeric and contain usually two to four copies of trimeric LHCII complexes. These supercomplexes have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. Together with the specific lipid composition, the structural features of the main protein complexes of the thylakoid membranes form the main trigger for the segregation of PSII and LHCII from PSI and ATPase into stacked grana membranes. We suggest that the margins, the strongly folded regions of the membranes that connect the grana, are essentially protein-free, and that protein-protein interactions in the lumen also determine the shape of the grana. We also discuss which mechanisms determine the stacking of the thylakoid membranes and how the supramolecular organization of the pigment-protein complexes in the thylakoid membrane and their flexibility may play roles in various regulatory mechanisms of green plant photosynthesis.  相似文献   

17.
Photosynthetic membrane sacs (thylakoids) of plants form granal stacks interconnected by non-stacked thylakoids, thereby being able to fine-tune (i) photosynthesis, (ii) photoprotection and (iii) acclimation to the environment. Growth in low light leads to the formation of large grana, which sometimes contain as many as 160 thylakoids. The net surface charge of thylakoid membranes is negative, even in low-light-grown plants; so an attractive force is required to overcome the electrostatic repulsion. The theoretical van der Waals attraction is, however, at least 20-fold too small to play the role. We determined the enthalpy change, in the spontaneous stacking of previously unstacked thylakoids in the dark on addition of Mg2+, to be zero or marginally positive (endothermic). The Gibbs free-energy change for the spontaneous process is necessarily negative, a requirement that can be met only by an increase in entropy for an endothermic process. We conclude that the dominant attractive force in thylakoid stacking is entropy-driven. Several mechanisms for increasing entropy upon stacking of thylakoid membranes in the dark, particularly in low-light plants, are discussed. In the light, which drives the chloroplast far away from equilibrium, granal stacking accelerates non-cyclic photophosphorylation, possibly enhancing the rate at which entropy is produced.  相似文献   

18.
Various techniques of electron microscopy (EM) such as ultrathin sectioning, freeze-fracturing, freeze-etching, negative staining and (cryo-)electron crystallography of two-dimensional crystals have been employed, since now, to obtain much of the structural information of the Photosystem II (PS II) pigment–protein complex at both low and high resolution. This review summarizes information about the structure of this membrane complex as well as its arrangement and interactions with the antenna proteins in thylakoid membranes of higher plants and cyanobacteria obtained by means of EM. Results on subunit organization, with the emphasis on the proteins of the oxygen-evolving complex (OEC), are compared with the data obtained by X-ray crystallography of cyanobacterial PS II. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The thylakoid membranes of isolated Euglena chloroplasts wereseparated into two fractions by aqueous two-phase-partitioning(mixture of dextran 500 and poly(ethylene glycol) 4000) followingpress disruption. These two fractions differ in many respectsduring most of the cell cycle of this alga in comparison withthe thylakoid characteristics of higher plants or green algae.The amount of thylakoid membranes with separation characteristicscomparable with inside-out-vesicles of higher plant chloroplastschanges depending on the cell cycle stage of Euglena gracilis.Photosystems II and I are not restricted to one fraction. Boththylakoid membrane fractions evolve oxygen photosynthetically.When chloroplast differentiation in Euglena gracilis is complete(i.e. at the end of the light-time) the composition and thephotosynthetic efficiency of the two thylakoid fractions aregenerally equal. Photosystem I-related LHCI is present in bothfractions. Photosystem II-related CP29, however, was only detectedin unfractionated thylakoid membranes. The implications forthylakoid organization in Euglena chloroplasts are discussed. Key words: Euglena gracilis, photosystem I, photosystem II, stacking, thylakoids  相似文献   

20.
Photosystem I contains several peripheral membrane proteins that are located on either positive (luminal) or negative (stromal or cytoplasmic) sides of thylakoid membranes of chloroplasts or cyanobacteria. Incorporation of two peripheral subunits into photosystem I of the cyanobacterium Synechocystis species PCC 6803 was studied using a reconstitution system in which radiolabeled subunits II (PsaD) and IV (PsaE) were synthesized in vitro and incubated with the isolated thylakoid membranes. After such incubation, the subunits were found in the membranes and were resistant to digestion with proteases and removal by 2 molar NaBr. All of the radioactive proteins incorporated in the membrane were found in the photosystem I complex. The subunit II was assembled specifically into cyanobacterial thylakoid membranes and not into Escherichia coli cell membranes or thylakoid membranes isolated from spinach. The assembly process did not require ATP or proton motive force, and it was not stimulated by ATP. The assembly of subunits II and IV into thylakoid membranes isolated from the strain AEK2, which lacks the gene psaE, was increased two- to threefold. The incorporation of subunit II was 15 to 17 times higher in the thylakoids obtained from the strain ADK3 in which the gene psaD has been inactivated. However, assembly of subunit IV in the same thylakoids was reduced by 65%, demonstrating that the presence of subunit II is required for the stable assembly of subunit IV. Large deletions in subunit II prevented its incorporation into thylakoids and assembly into photosystem I, suggesting that the overall conformation of the protein rather than a specific targeting sequence is required for its assembly into photosystem I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号