首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring.  相似文献   

2.
Aedes aegypti and Ae. albopictus are vectors of dengue viruses, which cause endemic disease in the city of Manaus, capital of the state of Amazonas, Brazil. More than 53 thousand cases have been registered in this city since the first epidemic in 1998. We evaluated the hypothesis that different ecological conditions result in different patterns of vector infestation in Manaus, by measuring the infestation level in four neighborhoods with different urbanization patterns, during the rainy (April), dry (August), and transitional (November) seasons. Ae. aegypti predominated throughout the study areas and sampling periods, representing 86% of all specimens collected in oviposition traps. High frequencies of houses positive for both species were observed in all studied sites, with Ae. aegypti present in more than 84% of the houses in all seasons. Ae. albopictus, on the other hand, showed more spatial and temporal variation in abundance. We found no association between infestation level and house traits. This study highlights the homogeneity of dengue vector distribution in Manaus.  相似文献   

3.

Background

Rio de Janeiro, Brazil, experienced a severe dengue fever epidemic in 2008. This was the worst epidemic ever, characterized by a sharp increase in case-fatality rate, mainly among younger individuals. A combination of factors, such as climate, mosquito abundance, buildup of the susceptible population, or viral evolution, could explain the severity of this epidemic. The main objective of this study is to model the spatial patterns of dengue seroprevalence in three neighborhoods with different socioeconomic profiles in Rio de Janeiro. As blood sampling coincided with the peak of dengue transmission, we were also able to identify recent dengue infections and visually relate them to Aedes aegypti spatial distribution abundance. We analyzed individual and spatial factors associated with seroprevalence using Generalized Additive Model (GAM).

Methodology/Principal Findings

Three neighborhoods were investigated: a central urban neighborhood, and two isolated areas characterized as a slum and a suburban area. Weekly mosquito collections started in September 2006 and continued until March 2008. In each study area, 40 adult traps and 40 egg traps were installed in a random sample of premises, and two infestation indexes calculated: mean adult density and mean egg density. Sera from individuals living in the three neighborhoods were collected before the 2008 epidemic (July through November 2007) and during the epidemic (February through April 2008). Sera were tested for DENV-reactive IgM, IgG, Nested RT-PCR, and Real Time RT-PCR. From the before–after epidemics paired data, we described seroprevalence, recent dengue infections (asymptomatic or not), and seroconversion. Recent dengue infection varied from 1.3% to 14.1% among study areas. The highest IgM seropositivity occurred in the slum, where mosquito abundance was the lowest, but household conditions were the best for promoting contact between hosts and vectors. By fitting spatial GAM we found dengue seroprevalence hotspots located at the entrances of the two isolated communities, which are commercial activity areas with high human movement. No association between recent dengue infection and household''s high mosquito abundance was observed in this sample.

Conclusions/Significance

This study contributes to better understanding the dynamics of dengue in Rio de Janeiro by assessing the relationship between dengue seroprevalence, recent dengue infection, and vector density. In conclusion, the variation in spatial seroprevalence patterns inside the neighborhoods, with significantly higher risk patches close to the areas with large human movement, suggests that humans may be responsible for virus inflow to small neighborhoods in Rio de Janeiro. Surveillance guidelines should be further discussed, considering these findings, particularly the spatial patterns for both human and mosquito populations.  相似文献   

4.
We investigated spatial autocorrelation of female Aedes aegypti L. mosquito abundance from BG‐Sentinel trap and sticky ovitrap collections in Cairns, north Queensland, Australia. BG‐Sentinel trap collections in 2010 show a significant spatial autocorrelation across the study site and over a smaller spatial extent, while sticky ovitrap collections only indicate a non‐significant, weak spatial autocorrelation. The BG‐Sentinel trap collections were suitable for spatial interpolation using ordinary kriging and cokriging techniques. The uses of Premise Condition Index and potential breeding container data have helped improve our prediction of vector abundance. Semiovariograms and prediction maps indicate that the spatial autocorrelation of mosquito abundance determined by BG‐Sentinel traps extends farther compared to sticky ovitrap collections. Based on our data, fewer BG‐Sentinel traps are required to represent vector abundance at a series of houses compared to sticky ovitraps. A lack of spatial structure was observed following vector control treatment in the area. This finding has implications for the design and costs of dengue vector surveillance programs.  相似文献   

5.

Introduction

The mosquito Aedes aegypti, vector of dengue, chikungunya and yellow fever viruses, is an important target of vector control programs in tropical countries. Most mosquito surveillance programs are still based on the traditional household larval surveys, despite the availability of new trapping devices. We report the results of a multicentric entomological survey using four types of traps, besides the larval survey, to compare the entomological indices generated by these different surveillance tools in terms of their sensitivity to detect mosquito density variation.

Methods

The study was conducted in five mid-sized cities, representing variations of tropical climate regimens. Surveillance schemes using traps for adults (BG-Sentinel, Adultrap and MosquiTRAP) or eggs (ovitraps) were applied monthly to three 1 km2 areas per city. Simultaneously, larval surveys were performed. Trap positivity and density indices in each area were calculated and regressed against meteorological variables to characterize the seasonal pattern of mosquito infestation in all cities, as measured by each of the four traps.

Results

The House Index was consistently low in most cities, with median always 0. Traps rarely produced null indices, pointing to their greater sensitivity in detecting the presence of Ae. aegypti in comparison to the larval survey. Trap positivity indices tend to plateau at high mosquito densities. Despite this, both indices, positivity and density, agreed on the seasonality of mosquito abundance in all cities. Mosquito seasonality associated preferentially with temperature than with precipitation even in areas where temperature variation is small.

Conclusions

All investigated traps performed better than the House Index in measuring the seasonal variation in mosquito abundance and should be considered as complements or alternatives to larval surveys. Choice between traps should further consider differences of cost and ease-of-use.  相似文献   

6.
The black salt marsh mosquito, Aedes taeniorhynchus, is a serious nuisance pest and a potential vector of a number of arboviruses. This study examined the effect of wind direction, wind speed, temperature, and time of year on the abundance of Ae. taeniorhynchus collected in CO2‐baited light traps at 12 sites in the Florida Keys during 2004. The dependent variable analyzed was the natural log of weekly mosquito abundance. The previous week's wind speed and wind direction, and the current week's temperature were used as independent variables. Simple and multiple linear regression models were used to assess the significance and nature of association between the meteorological variables and the natural log of mosquito abundance, and to determine whether the meteorological variables had significant associations with mosquito abundance after also controlling for time of year. Week of year was treated as a circular independent variable in the regression models, using the sine and cosine of week in radians to model the periodic seasonal fluctuation in mosquito abundance. Mosquito abundance was significantly associated with all meteorological variables and with week of year. Individually, previous week's wind speed and wind direction, and current week's temperature were able to explain respectively 24.5%, 24.5%, and 52.1% of the variation in mosquito abundance observed over the year. Week of year had the strongest individual association with mosquito abundance, explaining 65.7% of the variation in mosquito abundance. The meteorological variables were still significantly associated with mosquito abundance, after controlling for week of year. Week and the meteorological variables together explained 79.2% of the variation in mosquito abundance. The regression models fit to the data from this study suggest a strong periodic seasonal variation in mosquito abundance, with meteorological conditions explaining a significant portion of the variation beyond the seasonal trend.  相似文献   

7.

Background

Temperature and humidity strongly affect the physiology, longevity, fecundity and dispersal behavior of Aedes aegypti, vector of dengue fever. Contrastingly, the statistical associations measured between time series of mosquito abundance and meteorological variables are often weak and contradictory. Here, we investigated the significance of these relationships at different time scales.

Methods and Findings

A time series of the adult mosquito abundance from a medium-sized city in Brazil, lasting 109 weeks was analyzed. Meteorological variables included temperature, precipitation, wind velocity and humidity. As analytical tools, generalized linear models (GLM) with time lags and interaction terms were used to identify average effects while the wavelet analysis was complementarily used to identify transient associations. The fitted GLM showed that mosquito abundance is significantly affected by the interaction between lagged temperature and humidity, and also by the mosquito abundance a week earlier. Extreme meteorological variables were the best predictors, and the mosquito population tended to increase at values above and 54% humidity. The wavelet analysis identified non-stationary local effects of these meteorological variables on abundance throughout the study period, with peaks in the spring-summer period. The wavelet detected weak but significant effects for precipitation and wind velocity.

Conclusion

Our results support the presence of transient relationships between meteorological variables and mosquito abundance. Such transient association may be explained by the ability of Ae. aegypti to buffer part of its response to climate, for example, by choosing sites with proper microclimate. We also observed enough coupling between the abundance and meteorological variables to develop a model with good predictive power. Extreme values of meteorological variables with time lags, interaction terms and previous mosquito abundance are strong predictors and should be considered when understanding the climate effect on mosquito abundance and population growth.  相似文献   

8.
Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.  相似文献   

9.
Dengue is an important disease that affects humans, and is transmitted by A. aegypti. During 2006, a total of 477 cases of hemorrhagic dengue, and 1 510 of classic dengue were recorded in Sinaloa. Due to this high impact, a study on insect abundance and distribution, as well as their relationship with dengue dispersion, was carried out from April 2008 to March 2009 in Guasave, Sinaloa. The study included a total of six sectors in the city, considering 16 colonies; besides, 96 traps were distributed in these sectors to monitor the vector population density and female number per trap. The adult density index (ADI) and traps positive index (TPI) were calculated, and data were used to obtain the monthly dengue dispersion maps. The highest abundance of female (137 and 139) was found in July and August. In August and September the sectors 2, 4 and 6 showed the highest ADI values 2.44, 3.35 and 2.290, while TPI values were 56.25, 58.82 and 61.54, with the highest epidemiology dengue dispersion. The Pearson correlation (p < 0.05) showed better values with the precipitation (r = 0.80) than mean temperature (r = 0.76) with zero lag months; while the cases of classic dengue and hemorrhagic dengue (CD/HD) is mostly related with the precipitation (r = 0.98), and minimum temperature (r = 0.79), with two lag months. In conclusion, the ADI and TPI index, as well as the maps obtained, allowed us to know the location of epidemiologic dengue risk areas. This information can be used to develop better control measures biological and chemical for the mosquito, in this location.  相似文献   

10.
In Buenos Aires, the most crowded city of Argentina, there is a potential risk of dengue virus transmission by the mosquito Aedes aegypti during late summer. The temporal patterns of oviposition activity and abundance of breeding sites of this vector were studied in two cemeteries of the city. Between September 1998 and August 1999, we examined 142 ovitraps weekly and a total of 18,010 water-filled containers. Both study areas showed remarkable differences in the percentages of positive ovitraps (19% vs 8%) and breeding sites (18% vs 1%), but similar temporal abundance patterns. The percentage of breeding sites was higher in summer and autumn than in spring and winter, and the percentage of positive ovitraps was higher in summer than in the other three seasons. Immatures were recorded from the first week of October to the second week of July, and oviposition activity from the third week of October until the end of April. In both cemeteries and with both methodologies the highest infestation levels were registered in March (ovitraps: 41.8% and 20.6%, breeding sites: 39.2% and 3.4%). These highest abundances took place after several months with mean temperatures above 20 degrees C and accumulated rainfalls above 150 mm. A sharp decline in oviposition activity was observed when monthly mean temperature decreased to 16.5 degrees C, and no eggs were found below 14.8 degrees C. Seasonal fluctuation of Ae. aegypti abundances in mid-latitudes like Buenos Aires would allow reduction of the egg mosquito population through the elimination of containers during the coldest months, which are free of adults.  相似文献   

11.
The temporal distribution and spatial pattern of abundance of mosquito vectors of Rift Valley fever (RVf) and West Nile fever (WNf) were studied during the 2005 and 2006 rainy seasons at Barkedji, Senegal. Mosquitoes were collected every two weeks with CDC light traps with dry ice at 79 sites including temporary ponds, barren, shrubby savannah, wooded savannah, steppes, and villages at different distances (between 0 and 600 m) from the nearest pond. The temporal distributions of these vectors varied between 2005 and 2006 and were positively correlated with rainfall for Aedes (Aedimorphus) vexans Patton, with rainfall after a lag time of one month for Culex (Culex) poicilipes (Theobald) and Culex (Culex) neavei Theobald. All the vectors had their highest abundances and parity rates between September and November. The highest vector abundances were observed in the barren and temporary ponds. The distance of trap location to the nearest ponds was negatively correlated to the abundance of the vectors. Taking into account the linear regression equations, it was predicted that mosquitoes would not disperse and be collected by the light trap, up to 1,500 m to the nearest ponds. The implications of these findings in the epidemiology and control of RVF and WNF at Barkedji are discussed.  相似文献   

12.
It is currently unclear what role microhabitat land cover plays in determining the seasonal spatial distribution of Aedes aegypti and Culex quinquefasciatus, disease vectors of dengue and West Nile Virus, respectively, in Tucson, AZ. We compared mosquito abundance to sixteen land cover variables derived from 2010 NAIP multispectral data and 2008 LiDAR height data. Mosquitoes were trapped with 30–9 traps from May to October of 2010 and 2011. Variables were extracted for five buffer zones (10–50 m radii at 10 m intervals) around trapping sites. Stepwise regression was performed to determine the best scale for observation and the influential land cover variables. The 30 m radius buffer was determined to be the best for observing the land cover‐mosquito abundance relationship. Ae. aegypti presence was positively associated with structure and medium height trees and negatively associated with bare earth; Cx. quinquefasciatus presence was positively associated with pavement and medium height trees and negatively associated with shrubs. These findings emphasize vegetation, impervious surfaces, and soil influences on mosquito presence in an urban setting. Lastly, the land cover‐mosquito abundance relationships were used to produce risk maps of seasonal presence that highlight high risk areas in Tucson, which may be useful for focusing mosquito control program actions.  相似文献   

13.
BackgroundDespite dengue dynamics being driven by complex interactions between human hosts, mosquito vectors and viruses that are influenced by climate factors, an operational model that will enable health authorities to anticipate the outbreak risk in a dengue non-endemic area has not been developed. The objectives of this study were to evaluate the temporal relationship between meteorological variables, entomological surveillance indices and confirmed dengue cases; and to establish the threshold for entomological surveillance indices including three mosquito larval indices [Breteau (BI), Container (CI) and House indices (HI)] and one adult index (AI) as an early warning tool for dengue epidemic.Conclusion/SignificanceThere was little evidence of quantifiable association among vector indices, meteorological factors and dengue transmission that could reliably be used for outbreak prediction. Our study here provided the proof-of-concept of how to search for the optimal model and determine the threshold for dengue epidemics. Since those factors used for prediction varied, depending on the ecology and herd immunity level under different geological areas, different thresholds may be developed for different countries using a similar structure of the two-stage model.  相似文献   

14.
Ochlerotatus albifasciatus (Macquart) (Diptera: Culicidae) is the main vector of the western equine encephalomyelitis (WEE) virus and potentially of other arboviruses in Argentina. Surges of adult population abundance during the rainy season are a nuisance, affecting milk and beef production. Larvae develop in short periods in shallow temporary ground pools on fresh or brackish water. Although adults seem to disperse long distances from larval habitats, little is known about their habitat preferences. This work studied factors affecting the spatial pattern of adult Oc. albifasciatus abundance. Adult mosquitoes were collected using CDC miniature light traps baited with CO2 at 28 sites located to the south of Mar Chiquita Lagoon, from November 1997 to April 1998. Each site was typified according to its predominating vegetation cover, potential breeding site occurrence, land slope and cattle density. The spatial and temporal patterns of abundance suggested that Oc. albifasciatus prefers prairies and natural grasslands subject to periodic flooding vs. woodland and farm land. A discriminant function based on the proximity to potential larval habitats, distance to woodland and land slope accurately classified 95% of the data categorized as having an average high (>500 mosquitoes) or low (<500 mosquitoes) abundance, and was validated using six sites located away from the study area. An analysis of the temporal variation of mosquito abundance highlighted the influence of the dynamics of the larval habitats on adult mosquito abundance.  相似文献   

15.
Mosquito-borne diseases (MBDs) are still threats to public health in Zhejiang. In this study, the associations between the time-lagged mosquito capture data and MBDs incidence over five years were used to examine the potential effects of mosquito abundance on patterns of MBDs epidemiology in Zhejiang during 2008–2012. Light traps were used to collect adult mosquitoes at 11 cities. Correlation tests with and without time lag were performed to investigate the correlations between MBDs incidence rates and mosquito abundance by month. Selected MBDs consisted of Japanese encephalitis (JE), dengue fever (DF) and malaria. A Poisson regression analysis was performed by using a generalized estimating equations (GEE) approach, and the most parsimonious model was selected based on the quasi-likelihood based information criterion (QICu). We identified five mosquito species and the constituent ratio of Culex pipiens pallens, Culex tritaeniorhynchus, Aedes albopictus, Anopheles sinensis and Armigeres subalbatus was 66.73%, 21.47%, 6.72%, 2.83% and 2.25%, respectively. The correlation analysis without and with time lag showed that Culex mosquito abundance at a lag of 0 or 1 month was positively correlated with JE incidence during 2008–2012, Ae. albopictus abundance at a lag of 1 month was positively correlated with DF incidence in 2009, and An. sinensis abundance at a lag of 0–2 months was positively correlated with malaria incidence during 2008–2010. The Poisson regression analysis showed each 0.1 rise of monthly mosquito abundance corresponded to a positive increase of MBD cases for the period of 2008–2012. The rise of mosquito abundance with a lag of 0–2 months increased the risk of human MBDs infection in Zhejiang. Our study provides evidence that mosquito monitoring could be a useful early warning tool for the occurrence and transmission of MBDs.  相似文献   

16.
Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010–2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important environmental and human factors.  相似文献   

17.
The mosquito species is one of most important insect vectors of several diseases, namely, malaria, filariasis, Japanese encephalitis, dengue, and so on. In particular, in recent years, as the number of people who enjoy outdoor activities in urban areas continues to increase, information about mosquito activity is in demand. Furthermore, mosquito activity prediction is crucial for managing the safety and the health of humans. However, the estimation of mosquito abundances frequently involves uncertainty because of high spatial and temporal variations, which hinders the accuracy of general mechanistic models of mosquito abundances. For this reason, it is necessary to develop a simpler and lighter mosquito abundance prediction model. In this study, we tested the efficacy of the artificial neural network (ANN), which is a popular empirical model, for mosquito abundance prediction. For comparison, we also developed a multiple linear regression (MLR) model. Both the ANN and the MLR models were applied to estimate mosquito abundances in 2-year observations in Yeongdeungpo-gu, Seoul, conducted using the Digital Mosquito Monitoring System (DMS). As input variables, we used meteorological data, including temperature, wind speed, humidity, and precipitation. The results showed that performances of the ANN model and the MLR model are almost same in terms of R and root mean square error (RMSE). The ANN model was able to predict the high variability as compared to MLR. A sensitivity analysis of the ANN model showed that the relationships between input variables and mosquito abundances were well explained. In conclusion, ANNs have the potential to predict fluctuations in mosquito numbers (especially the extreme values), and can do so better than traditional statistical techniques. But, much more work needs to be conducted to assess meaningful time delays in environmental variables and mosquito numbers.  相似文献   

18.
The Biogents® Sentinel (BGS) trap is the standard tool to monitor adult Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae), the Asian tiger mosquito. BGS traps are commonly placed in residential properties during surveillance operations, but locations within properties may have significant differences in ambient light, temperature, and humidity (e.g. between a sunlit lawn and shady underbrush). We examined the effect of BGS trap placement on Ae. albopictus capture rates in three residential properties in Monmouth County, New Jersey, USA. In each property we visually selected locations as shade, partial shade, and sun. Traps in “partial shade” locations were under vegetation and were exposed to filtered sunlight during some parts of the day while “shaded” locations were never exposed to direct sunlight. Locations defined as “sun” were exposed to direct sunlight for large parts of the day. We placed a BGS trap in each of the three location types and used small data loggers to measure temperature, relative humidity, and light exposure at each trap during a 24-hour deployment. To address temporal variability, we made seven separate measurements from 31 August to 22 September 2010. We found that “partial shade” and “full shade” locations did not differ but that “full sun” locations had significantly higher light exposure, higher temperature, and lower humidity. Importantly, Ae. albopictus catches (males, females, or both) were consistently and significantly over 3 times higher in traps located in shaded locations. To further investigate the effects of local temperature and humidity on surveillance we examined Ae. albopictus collections from 37 BGS traps fitted with data loggers and deployed weekly from August through mid October, during the 2009 season, in three urban sites in Mercer County, NJ. We confirmed that local climate influences capture rates and that Ae. albopictus surveillance projects need to monitor trap placement carefully for maximum efficiency.  相似文献   

19.
Dengue fever is a major public health problem worldwide, caused by any of four virus (DENV-1, DENV-2, DENV-3 and DENV-4; Flaviviridae: Flavivirus), transmitted by Aedes aegypti mosquito. Reducing the levels of infestation by A. aegypti is one of the few current strategies to control dengue fever. Entomological indicators are used by dengue national control program to measure the infestation of A. aegypti, but little is known about predictive power of these indicators to measure dengue risk. In this spatial case-control study, we analyzed the spatial distribution of the risk of dengue and the influence of entomological indicators of A. aegypti in its egg, larva-pupa and adult stages occurring in a mid-size city in the state of São Paulo. The dengue cases were those confirmed by the city''s epidemiological surveillance system and the controls were obtained through random selection of points within the perimeter of the inhabited area. The values of the entomological indicators were extrapolated for the entire study area through the geostatistical ordinary kriging technique. For each case and control, the respective indicator values were obtained, according with its geographical coordinates and analyzed by using a generalized additive model. Dengue incidence demonstrated a seasonal behavior, as well as the entomological indicators of all mosquito''s evolutionary stages. The infestation did not present a significant variation in intensity and was not a limiting or determining factor of the occurrence of cases in the municipality. The risk maps of the disease from crude and adjusted generalized additive models did not present differences, suggesting that areas with the highest values of entomological indicators were not associated with the incidence of dengue. The inclusion of other variables in the generalized additive models may reveal the modulatory effect for the risk of the disease, which is not found in this study.  相似文献   

20.
A prospective field study was conducted to determine transovarial dengue‐virus transmission in two forms of Aedes aegypti mosquitoes in an urban district of Bangkok, Thailand. Immature Aedes mosquitoes were collected monthly for one year and reared continuously until adulthood in the laboratory. Mosquitoes assayed for dengue virus were processed in pools and their dengue virus infection status was determined by one‐step RT‐PCR and nested‐PCR methods. Of a total 15,457 newly emerged adult Ae. aegypti, 98.2% were dark and 1.8% of the pale form. The results showed that the minimum infection rate (MIR) by transovarial transmission (TOT) of dengue virus during the one‐year study ranged between 0 to 24.4/1,000 mosquitoes. Dengue virus TOT increased gradually during the hot summer months, reaching a peak in April‐June, while dengue cases peaked in September, a rainy month near the end of the rainy season. Therefore, mosquito infections due to TOT were prevalent four months before a high incidence of human infections. TOT dengue virus infections occurred in both forms of Ae. aegypti. All four dengue serotypes were detected, with DEN‐4 predominant, followed by DEN‐3, DEN‐1, and DEN‐2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号