首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis have been termed “protein misfolding disorders.” Upregulation of heat shock proteins that target misfolded aggregation-prone proteins has been proposed as a potential therapeutic strategy to counter neurodegenerative disorders. The heat shock protein 70 (HSP70) family is well characterized for its cytoprotective effects against cell death and has been implicated in neuroprotection by overexpression studies. HSP70 family members exhibit sequence and structural conservation. The significance of the multiplicity of HSP70 proteins is unknown. In this study, coimmunoprecipitation was employed to determine if association of HSP70 family members occurs, including Hsp70B′ which is present in the human genome but not in mouse and rat. Heteromeric complexes of Hsp70B′, Hsp70, and Hsc70 were detected in differentiated human SH-SY5Y neuronal cells. Hsp70B′ also formed complexes with Hsp40 suggesting a common co-chaperone for HSP70 family members.  相似文献   

3.
The self-association of misfolded or damaged proteins into ordered amyloid-like aggregates characterizes numerous neurodegenerative disorders. Insoluble amyloid plaques are diagnostic of many disease states. Yet soluble, oligomeric intermediates in the aggregation pathway appear to represent the toxic culprit. Molecular chaperones regulate the fate of misfolded proteins and thereby influence their aggregation state. Chaperones conventionally antagonize aggregation of misfolded, disease proteins and assist in refolding or degradation pathways. Recent work suggests that chaperones may also suppress neurotoxicity by converting toxic, soluble oligomers into benign aggregates. Chaperones can therefore suppress or promote aggregation of disease proteins to ameliorate the proteotoxic accumulation of soluble, assembly intermediates.Key words: chaperone, heat shock protein, protein aggregation, amyloid, Hsp70, Hsp40, prion  相似文献   

4.
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been termed "protein misfolding disorders." These diseases differ widely in frequency and impact different classes of neurons. Heat shock proteins provide a line of defense against misfolded, aggregation-prone proteins and are among the most potent suppressors of neurodegeneration in animal models. Analysis of constitutively expressed heat shock proteins revealed variable levels of Hsc70 and Hsp27 in different classes of neurons in the adult rat brain. The differing levels of these constitutively expressed heat shock proteins in neuronal cell populations correlated with the relative frequencies of the previously mentioned neurodegenerative diseases.  相似文献   

5.
Proper regulation of protein homeostasis (proteostasis) is essential to maintain cellular fitness. Proteome stress causes imbalance of the proteostasis, leading to various diseases represented by neurodegenerative diseases, cancers, and metabolic disorders. The biosensor community recently embarked on the development of proteome stress sensors to report on the integrity of proteostasis in live cells. While most of these sensors are based on metastable mutants of specific client proteins, a recent sensor takes advantage of the specific association of heat shock protein 27 with protein aggregates and exhibits a diffusive to punctate fluorescent change in cells that are subjected to stress conditions. Thus, heat shock proteins can be also used as a family of sensors to monitor proteome stress.  相似文献   

6.
Chaperone signalling complexes in Alzheimer's disease   总被引:1,自引:0,他引:1  
Molecular chaperones and heat shock proteins (Hsp) have emerged as critical regulators of proteins associated with neurodegenerative disease pathologies. The very nature of the chaperone system, which is to maintain protein quality control, means that most nascent proteins come in contact with chaperone proteins. Thus, amyloid precursor protein (APP), members of the gamma-secretase complex (presenilin 1 [PS1] collectively), the microtubule-associated protein tau (MAPT) as well as a number of neuroinflammatory components are all in contact with chaperones from the moment of their production. Chaperones are often grouped together as one machine presenting abnormal or mutant proteins to the proteasome for degradation, but this is not at all the case. In fact, the chaperone family consists of more than 100 proteins in mammalian cells, and the primary role for most of these proteins is to protect clients following synthesis and during stress; only as a last resort do they facilitate protein degradation. To the best of our current knowledge, the chaperone system in eukaryotic cells revolves around the ATPase activities of Hsp70 and Hsp90, the two primary chaperone scaffolds. Other chaperones and co-chaperones manipulate the ATPase activities of Hsp70 and Hsp90, facilitating either folding of the client or its degradation. In the case of Alzheimer's disease (AD), a number of studies have recently emerged describing the impact that these chaperones have on the proteotoxic effects of tau and amyloid-β accumulation. Here, we present the current understandings of chaperone biology and examine the literature investigating these proteins in the context of AD.  相似文献   

7.
8.
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been termed protein misfolding disorders that are characterized by the neuronal accumulation of protein aggregates. Manipulation of the cellular stress-response involving induction of heat shock proteins (Hsps) in differentiated neurons offers a therapeutic strategy to counter conformational changes in neuronal proteins that trigger pathogenic cascades resulting in neurodegenerative diseases. Hsps are protein repair agents that provide a line of defense against misfolded, aggregation-prone proteins. These proteins are not induced in differentiated neurons by conventional heat shock. We have found that celastrol, a quinine methide triterpene, induced expression of a wider set of Hsps, including Hsp70B', in differentiated human neurons grown in tissue culture compared to cultured rodent neuronal cells. Hence the beneficial effect of celastrol against human neurodegenerative diseases may exceed its potential in rodent models of these diseases.  相似文献   

9.
A factor that is common to the most-frequent neurodegenerative diseases is the accumulation of abnormal proteins that are associated with cellular dysfunction. Contrary to years of speculation, recent evidence suggests that soluble intermediates--not the visible pathological aggregates associated with disease--are the cause of neurotoxicity. These findings suggest that aggregate formation might be an adaptive stress response that is facilitated by neuronal protein triage molecules. In particular, the molecular co-chaperone CHIP (C terminus of HSC70-interacting protein) has been linked to several of these disorders, serving as a crucial catalyst for the ubiquitination of several heat shock protein (HSP)70 client proteins that are involved in neurodegenerative disease. Therefore, understanding the mechanisms that are involved in CHIP-mediated protein trafficking might provide invaluable clues to neuronal function, both in normal and diseased conditions.  相似文献   

10.
Park JA  Kim YE  Ha YH  Kwon HJ  Lee Y 《BMB reports》2012,45(5):299-304
The ubiquitin-proteasome system is a major proteolytic system for nonlysosomal degradation of cellular proteins. Here, we investigated the response of mouse embryonic stem (ES) cells under proteotoxic stress. Proteasome inhibitors induced expression of heat shock protein 70 (HSP70) in a concentration- and time-dependent manner, and also induced apoptosis of ES cells. Importantly, more apoptotic cells were observed in ES cells compared with other somatic cells. To understand this phenomenon, we further investigated the expression of HSP70 and pluripotent cell markers. HSP70 expression was more significantly increased in somatic cells than in ES cells, and expression levels of pluripotent cell markers such as Oct4 and Nanog were decreased in ES cells. These results suggest that higher sensitivity of ES cells to proteotoxic stress may be related with lower capacity of HSP70 expression and decreased pluripotent cell marker expression, which is essential for the survival of ES cells.  相似文献   

11.
Hsp70, Hsp32, and Hsp27 were induced by celastrol in rat cerebral cortical cultures at dosages that did not affect cell viability. Pronounced differences were observed in the cellular localization of these heat shock proteins in cell types of cerebral cortical cultures. Celastrol-induced Hsp70 localized to the cell body and cellular processes of neurons that were identified by neuron-specific βIII-tubulin. Hsp70 was not detected in adjacent GFAP-positive glial cells that demonstrated a strong signal for Hsp27 and Hsp32 in both glial cell bodies and cellular processes. Cells in the cerebral cortex region of the brain are selectively impacted during the progression of Alzheimer’s disease which is a “protein misfolding disorder.” Heat shock proteins provide a line of defense against misfolded, aggregation-prone proteins. Celastrol is a potential agent to counter this neurodegenerative disorder as recent evidence indicates that in vivo administration of celastrol in a transgenic model of Alzheimer’s reduces an important neuropathological hallmark of this disease, namely, amyloid beta pathology that involves protein aggregation.  相似文献   

12.
Sex steroids influence the structural and functional organization of ocular tissues, promote survival in several pathological conditions including retinal neurodegeneration and have a prominent role in age-related eye diseases as well as neurodegenerative diseases. However, their underlying mechanisms are still elusive. We explored proteomic profiling of rat retinas following intravitreal injection of the bioactive 17β-estradiol or androgen dihydrotestosterone. Using narrow range 2-DE gels and MALDI-TOF-MS analysis, we identified three sex steroid-regulated proteins: the galectin-related-inter-fiber (GRIFIN) which is a galectin family member protein of unknown function, the fatty acid-binding protein epidermal-5 (FABP5) protein responsible for the fatty acid uptake and transport and the small heat shock αA-crystallin (CRYAA) protein involved in preventing aggregation of denatured or unfolded proteins. Changes in the expression of these proteins revealed a predominant estrogenic effect and the multiple CRYAA protein species reflected posttranslational modifications. Sex steroid-mediated modifications of CRYAA were confirmed by Western blotting analysis. This study provides new target proteins for sex steroids with a potential link to age-related diseases associated with proteotoxic stress.  相似文献   

13.
Aging is associated with a reduced ability to cope with physiological challenges. Although the mechanisms underlying age-related alterations in stress tolerance are not well defined, many studies support the validity of the oxidative stress hypothesis, which suggests that lowered functional capacity in aged organisms is the result of an increased generation of reactive oxygen and nitrogen species. Increased production of oxidants in vivo can cause damage to intracellular macromolecules, which can translate into oxidative injury, impaired function and cell death in vulnerable tissues such as the brain. To survive different types of injuries, brain cells have evolved networks of responses, which detect and control diverse forms of stress. This is accomplished by a complex network of the so-called longevity assurance processes, which are composed of several genes termed vitagenes. Among these, heat shock proteins form a highly conserved system responsible for the preservation and repair of the correct protein conformation. The heat shock response contributes to establishing a cytoprotective state in a wide variety of human diseases, including inflammation, cancer, aging and neurodegenerative disorders. Given the broad cytoprotective properties of the heat shock response, there is now a strong interest in discovering and developing pharmacological agents capable of inducing the heat shock response. Acetylcarnitine is proposed as a therapeutic agent for several neurodegenerative disorders, and there is now evidence that it may play a critical role as modulator of cellular stress response in health and disease states. In the present review, we first discuss the role of nutrition in carnitine metabolism, followed by a discussion of carnitine and acetyl-l-carnitine in mitochondrial dysfunction, in aging, and in age-related disorders. We then review the evidence for the role of acetylcarnitine in modulating redox-dependent mechanisms leading to up-regulation of vitagenes in brain, and we also discuss new approaches for investigating the mechanisms of lifetime survival and longevity.  相似文献   

14.
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. They counter protein misfolding and aggregation that are characteristic features of neurodegenerative diseases. Hsps act co-operatively in disaggregation/refolding machines that assemble at sites of protein misfolding and aggregation. Members of the DNAJ (Hsp40) family act as “holdases” that detect and bind misfolded proteins, while members of the HSPA (Hsp70) family act as “foldases” that refold proteins to biologically active states. HSPH1 (Hsp105α) is an important additional member of the mammalian disaggregation/refolding machine that acts as a disaggregase to promote the dissociation of aggregated proteins. Components of a disaggregation/refolding machine were targeted to nuclear speckles after thermal stress in differentiated human neuronal SH-SY5Y cells, namely: HSPA1A (Hsp70-1), DNAJB1 (Hsp40-1), DNAJA1 (Hsp40-4), and HSPH1 (Hsp105α). Nuclear speckles are rich in RNA splicing factors, and heat shock disrupts RNA splicing which recovers after stressful stimuli. Interestingly, constitutively expressed HSPA8 (Hsc70) was also targeted to nuclear speckles after heat shock with elements of a disaggregation/refolding machine. Hence, neurons have the potential to rapidly assemble a disaggregation/refolding machine after cellular stress using constitutively expressed Hsc70 without the time lag needed for synthesis of stress-inducible Hsp70. Constitutive Hsc70 is abundant in neurons in the mammalian brain and has been proposed to play a role in pre-protecting neurons from cellular stress.  相似文献   

15.
The regulation of protein synthesis is essential for maintaining cellular homeostasis, especially during stress responses, and its dysregulation could underlie the development of human diseases. The critical step during translation regulation is the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). Here we report the identification of a direct kinase of eIF2α, microtubule affinity-regulating kinase 2 (MARK2), which phosphorylates eIF2α in response to proteotoxic stress. The activity of MARK2 was confirmed in the cells lacking the 4 previously known eIF2α kinases. MARK2 itself was found to be a substrate of protein kinase C delta (PKCδ), which serves as a sensor for protein misfolding stress through a dynamic interaction with heat shock protein 90 (HSP90). Both MARK2 and PKCδ are activated via phosphorylation in proteotoxicity-associated neurodegenerative mouse models and in human patients with amyotrophic lateral sclerosis (ALS). These results reveal a PKCδ-MARK2-eIF2α cascade that may play a critical role in cellular proteotoxic stress responses and human diseases.

The regulation of protein translation is vital for cellular stress responses and human diseases. This study identifies a new pathway that regulates the key step of translation initiation, with MARK2 directly phosphorylating eIF2α and acting downstream of PKCδ. This pathway is activated in conditions of cellular stress and in proteotoxicity-associated neurodegeneration.  相似文献   

16.
The major heat shock protein (hsp) of Hydra vulgaris has recently been found to be a 60 kDa protein. Since in all organisms studied so far, the major heat shock protein is a 70 kDa protein, we have analyzed the relationship of hydra hsp60 to the highly conserved 70 kDa heat shock protein family. Genes and proteins related to the 70 kDa class of stress proteins are present in hydra. However, antibodies known to cross-react with hsp70 proteins in several different organisms do not cross-react with hydra hsp60 suggesting that hsp60 is not related to the conserved hsp70 proteins.  相似文献   

17.
Heat shock (25° C) of 10° C-acclimated rainbow trout Oncorhynchus mykiss led to increases in heat shock protein 70 (hsp70) mRNA in blood, brain, heart, liver, red and white muscle, with levels in blood being amongst the highest. Hsp30 mRNA also increased with heat shock in all tissues with the exception of blood. When rainbow trout blood was heat shocked in vitro , both hsp70 and hsp30 mRNA increased significantly. In addition, these in vitro experiments demonstrated that blood from fish acclimated to 17° C water had a lower hsp70 mRNA heat shock induction temperature than did 5° C acclimated fish (20 v. 25° C). The hsp30 mRNA induction temperature (25° C), however, was unaffected by thermal acclimation. While increases in hsp70 mRNA levels in blood may serve as an early indicator of temperature stress in fish, tissue type, thermal history and the particular family of hsp must be considered when evaluating stress by these molecular means.  相似文献   

18.
The 70-kDa heat shock protein (HSP70) family of molecular chaperones represents one of the most ubiquitous classes of chaperones and is highly conserved in all organisms. Members of the HSP70 family control all aspects of cellular proteostasis such as nascent protein chain folding, protein import into organelles, recovering of proteins from aggregation, and assembly of multi-protein complexes. These chaperones augment organismal survival and longevity in the face of proteotoxic stress by enhancing cell viability and facilitating protein damage repair. Extracellular HSP70s have a number of cytoprotective and immunomodulatory functions, the latter either in the context of facilitating the cross-presentation of immunogenic peptides via major histocompatibility complex (MHC) antigens or in the context of acting as “chaperokines” or stimulators of innate immune responses. Studies have linked the expression of HSP70s to several types of carcinoma, with Hsp70 expression being associated with therapeutic resistance, metastasis, and poor clinical outcome. In malignantly transformed cells, HSP70s protect cells from the proteotoxic stress associated with abnormally rapid proliferation, suppress cellular senescence, and confer resistance to stress-induced apoptosis including protection against cytostatic drugs and radiation therapy. All of the cellular activities of HSP70s depend on their adenosine-5′-triphosphate (ATP)-regulated ability to interact with exposed hydrophobic surfaces of proteins. ATP hydrolysis and adenosine diphosphate (ADP)/ATP exchange are key events for substrate binding and Hsp70 release during folding of nascent polypeptides. Several proteins that bind to distinct subdomains of Hsp70 and consequently modulate the activity of the chaperone have been identified as HSP70 co-chaperones. This review focuses on the regulation, function, and relevance of the molecular Hsp70 chaperone machinery to disease and its potential as a therapeutic target.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号