首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The instability of regulatory T (Treg) cells is involved in the pathogenesis of autoimmune diseases and also highlights safety concerns with regard to clinical Treg cell therapy. Cell-intrinsic molecular events linked to this Treg cell instability in vivo cells, which leads to safety concerns regardingare still obscure. Here we developed a novel luciferase-based reporter system and performed an unbiased screening for kinases that potentially modulate Foxp3 function. We found that the active form of COT/Tpl2 specifically inhibits the DNA binding activity of Foxp3 through a MEK-ERK-dependent pathway. Moreover, Treg cell-specific expression of activated MEK1 led to dysregulation of Treg function and instability of Foxp3 expression in vivo. Our results support the hypothesis that outside inflammatory signals act through the COT/Tpl2-MEK-ERK signaling pathway to destabilize the Treg lineage.  相似文献   

4.
5.
6.
7.
8.
Autism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP) cause Rubinstein-Taybi Syndrome (RTS), a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300) as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1) domain (CBPΔCH1/ΔCH1) have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations.  相似文献   

9.
10.
The recent structure and associated biochemical studies of the metazoan-specific p300/CBP and fungal-specific Rtt109 histone acetyltransferases (HATs) have provided new insights into the ancestral relationship between HATs and their functions. These studies point to a common HAT ancester that has evolved around a common structural framework to form HATs with divergent catalytic and substrate-binding properties. These studies also point to the importance of regulatory loops within HATs and autoacetylation in HAT function. Implications for future studies are discussed.  相似文献   

11.
12.
Histone acetyltransferases (HATs) is one among the conspicuous posttranslational modification in eukaryotic cells. p300/CBP Associated Factor (PCAF) and CREB-binding protein (CBP) are the two highly homologous HAT family which are vastly implicated in several diseases like cancer, diabetes, etc. Pentadecylidenemalonate, a simplified analog of anacardic acid, was reported as first mixed inhibitor/activator of HATs which inhibits p300/CBP and activates PCAF. It was appointed earlier as a valuable biological tool to understand the mechanism of lysine acetyltransferases due to its powerful apoptotic effect. In this study, pentadecylidenemalonate was taken for deciphering the binding mode, key interacting residues as well as mechanistic insights on PCAF and CBP as activator and inhibitor, respectively. This study is highly believed to help in rational design on antineoplastic drugs against PCAF.

Communicated by Ramaswamy H. Sarma  相似文献   


13.
14.
15.

Background

Both naturally arising Foxp3+ and antigen-induced Foxp3 regulatory T cells (Treg) play a critical role in regulating immune responses, as well as in preventing autoimmune diseases and graft rejection. It is known that antigen-specific Treg are more potent than polyclonal Treg in suppressing pathogenic immune responses that cause autoimmunity and inflammation. However, difficulty in identifying and isolating a sufficient number of antigen-specific Treg has limited their use in research to elucidate the mechanisms underlying their regulatory function and their potential role in therapy.

Methodology/Principal Findings

Using a novel class II MHC tetramer, we have isolated a population of CD4+ Foxp3 T cells specific for the autoantigen glutamic acid decarboxylase p286–300 peptide (NR286 T cells) from diabetes-resistant non-obese resistant (NOR) mice. These Foxp3 NR286 T cells functioned as Treg that were able to suppress target T cell proliferation in vitro and inhibit type 1 diabetes in animals. Unexpected results from mechanistic studies in vitro showed that their regulatory function was dependent on not only IFN-gamma and nitric oxide, but also on cell contact with target cells. In addition, separating NR286 Treg from target T cells in transwell assays abolished both production of NO and suppression of target T cells, regardless of whether IFN-γ was produced in cell cultures. Therefore, production of NO, not IFN-gamma, was cell contact dependent, suggesting that NO may function downstream of IFN-gamma in mediating regulatory function of NR286 Treg.

Conclusions/Significance

These studies identified a unique population of autoantigen-specific Foxp3 Treg that can exert their regulatory function dependent on not only IFN-γ and NO but also cell contact with target cells.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号