首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhythmic movements of crayfish swimmerets are coordinated by a neural circuit that links their four abdominal ganglia. Each swimmeret is driven by its own small local circuit, or pattern-generating module. We modeled this networkas a chain of four oscillators, bidirectionally coupled to their nearest neighbors, and tested the models ability to reproduce experimentally observed changes in intersegmental phases and in period caused by differential excitation of selected abdominal ganglia. The choices needed to match the experimental data lead to the followingpredictions: coupling between ganglia is asymmetric; the ascending and descending coupling have approximately equal strengths; intersegmental coupling does not significantly affect the frequency of the system; and excitation affects the intrinsic frequencies of the oscillators and might also change properties ofintersegmental coupling.  相似文献   

2.
Summary In crayfish,Pacifastacus leniusculus, abdominal ganglia that can generate the motor pattern normally associated with swimmeret beating continue to do so when the number of connected ganglia is reduced from six to two. The period and phase of the rhythm produced by these shortened chains of ganglia are the same as those produced by the full abdominal nerve cord. These results demonstrate that interactions between any two neighboring ganglia suffice to establish the metachronal phase-lag characteristic of the swimmeret rhythm.Several kinds of interganglionic interneurons that are part of the swimmeret system originate in each abdominal ganglion. These premotor interneurons receive synaptic input in the ganglion of origin and project to other ganglia. Axons from interganglionic neurons also terminate in each ganglion, and some of these terminals receive PSPs from the swimmeret pattern generators in the ganglion where they terminate. Currents injected into these interneurons and axon terminals can reset the swimmeret rhythm. These results demonstrate that premotor interganglionic interneurons exist that have the properties required to coordinate adjacent ganglia. The structures and physiological properties of these interneurons are described and discussed in the context of Stein's model of intersegmental coordination in the swimmeret system.  相似文献   

3.
Summary We describe the structures and physiological properties of thirteen kinds of local interneurons in the swimmeret system of the crayfish,Pacifastacus leniusculus. Eight are unilateral, with processes confined to one side of the midline (Figs. 1, 2); five are bilateral, with processes on both sides of the ganglion (Fig. 6). All have most of their branches in the lateral neuropils. All of the unilateral local interneurons were nonspiking; two of the bilateral interneurons generate action potentials. Three kinds of unilateral interneurons could reset the bursting rhythm or could initiate bursting in quiescent nerve cords. Four others drove tonic firing of motor neurons. Four kinds of bilateral interneurons were premotor, and could affect the period and phase of both pattern generators in their ganglion. One unilateral and one bilateral interneuron were sensory interneurons. At least one bilateral interneuron received input from both pattern generators.Different premotor local interneurons function either in pattern generation, or in hemisegmental coordination of groups of motor neurons, or in bilateral synchronization of the ganglionic pairs of local pattern-generators for the swimmerets.Abbreviations G1. ganglion 1. - LN lateral neuropil - MT miniscule tract  相似文献   

4.
The development of locomotor systems in the lobster Homarusamericanus is described. The tail—flip escape responseis fully developed when the larvae hatch, and occurs withoutthe participation of giant fibers. The abdominal swimmeretsare undifferentiated at hatching, but are fully developed twoto three weeks later when the animals molt to the fourth larvalstage. Forward locomotion in the pelagic larvae is achievedusing thoracic swimming appendages until the fourth larval stage,when these degenerate and the swimmerets assume the locomotorrole. The hypothesis that peripheral structures specify the centralnervous connections of motoneurons during ontogeny was testedin the swimmeret system. Presumptive swimmeret appendages, includingprospective muscle and sense organs, were extirpated prior totheir differentiation in newly hatched larvae. The correspondingswimmeret motoneurons nevertheless grew and formed normal centralconnections, as evidenced by the appearance of normal patternsof rhythmic locomotor discharge and normal reflexes at the usualtime. Moreover, swimmeret motoneurons retained normal patternsof motor output even when the regeneration of their target appendageswas prevented for as long as two months. Therefore, the formationof normal motor output patterns during ontogeny is not dependentupon feedback from differentiated target muscle nor from senseorgans which normally monitor the results of the motor activity.  相似文献   

5.
1.  The swimmerets ofJasus lalandii, in contrast to those well known in the nephropid lobsters (e.g.Homarus) and astacurans (crayfish), do not display spontaneous antero-posterior beating, but are either apposed actively to the ventral surface of the abdomen, or rotated outward (Fig. 2). These movements are imposed by the geometrical arrangement of the bicondylar joints at the base of the swimmeret (Fig. 3), and involve contraction of either the remotor muscle, or the promotor-rotator muscles (Figs. 2, 3). Each swimmeret includes a short, thick blade-like exopodite that contains two antagonistic muscles, a large curler and a small adductor muscle (Fig. 3). Each swimmeret is innervated by 80 motor neurons (MNs) which are disposed in two clusters in the ganglion.
2.  The modulation of the tonic discharge of the muscles which maintain the swimmeret position at rest (remotor and curler) has been studied in two situations: body rolling (Fig. 4) and walking activity (Fig. 5). In the female, in which the most anterior pair of swimmerets are biramous, both endopodite and exopodite curler muscles display the same responses to body rolling (Fig. 4). In all these situations no overt swimmeret movement occurs.
3.  Nevertheless, rhythmicity exists inJasus, but it is limited to the gravid female when the swimmerets bear the eggs (Fig. 6). In contrast to other decapod Crustacea, this swimmeret beating is not metachronous (Fig. 6).
4.  Movement monitoring (Fig. 7) and EMG recordings (Figs. 9, 10) have demonstrated the involvement of the swimmerets in the three phases of the tail flick response (preparation, flexion, extension). During the preparatory phase, in response to mechanical stimulation of the legs, the swimmerets open on the stimulated side (on both sides in the case of a symmetrical stimulation) (Fig. 7). During the rapid abdominal flexion of the tail flick all swimmerets open fully regardless of the stimulus (Figs. 7, 8). Two different units in the rotator muscle EMG are responsible for swimmeret opening during the preparatory and the flexion phases of the tail flick (Figs. 9, 10).
5.  The curler muscle of the endopodite in the female displays antagonistic activities to that of the exopodite during tail flicks (Fig. 10).
6.  Selective swimmeret blockage demonstrates that they contribute to the thrust efficacy in tail flicks. In particular they are responsible for the variation of the maximal force produced at its onset. This effect could be interpreted as a consequence of force redistribution by the swimmerets acting on water flow (produced by the tail fan). This mechanism implies a functional role for the swimmerets in righting and steering responses (Fig. 11).
  相似文献   

6.
1. Many interneurons in the crayfish (Procambarus clarkii) abdominal nervous system influence two behaviors, abdominal positioning and swimmeret movements. Such neurons are referred to as dual output cells. Other neurons which influence either one behavior or the other are single output cells. 2. Extensive synaptic interactions were observed between both dual and single output neurons involved in the control of abdominal positioning and swimmeret movements. Over 60% of all neuron pairs examined displayed interactions. Pairs of agonist neurons displayed excitatory interactions, while pairs of antagonists had inhibitory interactions. This pattern of interaction was observed in about 75% of interactive neuron pairs whether abdominal positioning or swimmeret outputs were considered. 3. Evidence for both serial and parallel connectivity, as well as, reciprocal or looping connections was observed. Looping connections can be found both between the abdominal positioning and swimmeret systems and within each system. 4. Most (28/34) single output neurons were not presynaptic to dual output neurons. No single output neurons were found to excite dual output neurons to spiking, although inhibitory interactions and weak excitations were observed. 5. Abdominal positioning inhibitors displayed properties consistent with a role in mediating some of the coordination between the swimmeret and abdominal positioning systems. 6. None of the dual output neurons examined influenced the swimmeret motoneurons directly.  相似文献   

7.
Swimmeret beating was monitored in freely moving specimens of the crayfish Procambarus clarkii as they exhibited defense turn responses to tactile stimuli. Analysis of videotape records revealed alterations in swimmeret beating during turning responses compared to straight, forward walking. During turns, swimmerets beat with shorter periods and smaller amplitude power strokes than during straight walking. Coordination between swimmerets also changed. Swimmerets on the side toward which the animal turned tended to lag behind their contralateral partners, rather than beat in synchrony as in straight walking, and ipsilateral coordination was loosened relative to straight walking. Asynchronous swimmeret beating accompanied asymmetric motions of the uropods in a manner similar to that observed during statocyst-dependent equilibrium reactions in P. clarkii, but removal of the statoliths did not eliminate turn-associated responses of the swimmerets. The coordinated action of the swimmerets and uropods may contribute to the torque that rotates the animal in the yaw plane. Implications of the observed changes in swimmeret coordination for understanding the underlying neuronal control system are discussed.  相似文献   

8.
The sensilla on the male and female second swimmerets are sexually dimorphic. Female swimmerets contain many long "smooth hairs" (long simple setae) on the coxa and rami. The endopodite of the male swimmeret has an accessory lobe covered with short "bristly spines" (serrate setae). In both sexes the swimmeret rami are lined by "feathered hairs" (plumose setae). The influence of mechanosensory stimulation of these sensilla upon abdominal tonic motor activity was analyzed in an in vitro swimmeret-nerve cord preparation. Movement of several clusters of smooth hairs produced an abdominal extension program by exciting the flexor inhibitor f5, inhibiting the flexor excitors, and activating several extensors. Stimulation of the male bristly spines excited the medium-sized flexor excitors f3 and f4. In both sexes the feathered hairs did not generate any response to mechanical stimulation. We infer that in nongravid females the smooth hairs are involved in receiving mechanosensitive cues to support abdominal extension. Bristly spines may contribute to postural adjustments that assist mating. The long latencies of these responses and their propagation to adjacent ganglia suggest that they are mediated by postural interneurons rather than by direct afferent terminations on postural motoneurons.  相似文献   

9.
The structure of the sexually modified 1st 2 pairs of swimmerets of the male squat lobster Galathea strigosa are described, and a reflex involving these swimmerets is characterised. The endopodite of the 1st swimmeret forms a partially rolled lamina which hooks around the “bottle brush” end of the endopodite of the 2nd swimmeret. Mechanical stimulation of a sensitive region on the endopodite of each 1st swimmeret causes retraction of both 2nd swimmerets, inducing the “bottle brush” to push up within the endopodite of the 1st swimmeret. The reflex is thought to be involved in sperm transfer during copulation. Neural information travels between the 1st and 2nd swimmerets in the interganglionic connective ipsilateral to the stimulus.  相似文献   

10.
Many macruran decapod crustaceans show sexual dimorphism of abdominal appendages adapted for use as secondary reproductive organs. Not only does the Australian crayfish, Cherax destructor, show no external, abdominal dimorphism, but both males and females have lost the pleopods of the first abdominal segment entirely. The first nerves of the abdominal ganglia of crayfish and lobsters carry the axons of the pleopod motor neurons. We used intracellular cobalt infusion into the first nerves of the first and second abdominal ganglia to reveal the motor neuron complement of these ganglia in males and females. The first nerves of the second abdominal ganglia of both males and females have approximately 37 motor neurons associated with them. The homologous nerves in the first abdominal segment, where there are no pleopods, have only 8 or 9 motor neurons associated with them. The evolutionary implications of this difference are discussed.  相似文献   

11.
The expression of both swimmeret and postural motor patterns in crayfish (Pacifastacus leniusculus) were affected by stimulation of a second root of a thoracic ganglion. The response of the swimmeret system depended on the state of the postural system. In most cases, the response of the swimmeret system outlasted the stimulus.Stimulation of a thoracic second root also elicited coordinated responses from the postural system, that outlasted the stimulus. In different preparations, either the flexor excitor motor neurones or the extensor excitor motor neurones were excited by this stimulation. In every case, excitation of one set of motor neurones was accompanied by inhibition of that group's functional antagonists.This stimulation seemed to coordinate the activity of both systems; when stimulation inhibited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were excited. When stimulation excited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were inhibited.Two classes of interneurones that responded to stimulation of a thoracic second root were encountered in the first abdominal ganglion. These interneurones could be the pathway that coordinates the response of the postural and swimmeret systems to stimulation of a thoracic second root.Abbreviations TSR thoracic second root - epsp excitatory post-synaptic potential - ipsp inhibitory post-synaptic potential - EJP excitatory jonctional potential - PS power-stroke - RS return-stroke - INT interneurone - N1 first segmental nerve - N2 second segmental nerve - N3 third segmental nerve - A1 abdominal ganglion 1  相似文献   

12.
Influence of walking on swimmeret beating in intact lobsters, Homarus gammarus, has been analyzed using a treadmill experimental device. Belt movement activates both leg stepping and swimmeret beating. The simultaneity of the onset of the two motor systems in this situation is demonstrated to be the result of a startle response initiated when the belt begins to move. This reaction consists of a non-specific motor activity involving several antagonist postural and dynamic muscles. Abdominal extension and vigorous swimmeret beating are the main featurs of this reaction. The main characteristics of the swimmeret beating as defined by Davis (1969) has been observed here in sequences without walking. However during long walking sequences a very different swimmeret beating pattern occurs. It is suggested that this slow swimmeret beating is completely subordinate to the walking rhythm during sequences of absolute coordination. In more rapid swimmeret beating a relative coordination with leg stepping is very common. The functional meaning of this linkage between legs and swimmerets is discussed.  相似文献   

13.
In a multiganglionic preparation of the lobster abdominal nerve cord, composed of the first through fifth ganglia (A1-A5) and attached second swimmeret, tactile stimulation of the cuticular surface of the swimmeret initiates a postural motor program in A2 for abdominal extension, whereas deflection of feathered hair sensilla that fringe the swimmeret rami does not affect postural motor activity recorded from A2 (Kotak and Page, 1986a). This report demonstrates that partial isolation of A2 from adjacent abdominal ganglia by sectioning the A1-A2 or the A2-A3 connectives both increases the strength of the extension response evoked by cuticular stimulation and disinhibits a postural flexion inhibition response initiated by feathered hair stimulation. Complete isolation of A2, by cutting the A1-A2 and the A2-A3 connectives, further increases the strength of these postural responses. Intersegmental inhibition of these responses originates in the ganglia adjacent to A2, since mechanoresponsiveness of A2 is not affected by resection of a more distant connective (A3-A4). These results provide evidence for the presence in adjacent abdominal ganglia of intersegmental interneurons that regulate the access of swimmeret sensory activity to the postural motor neurons in A2.  相似文献   

14.
The heart of Squilla oratoria is innervated by processes arising from the cardiac ganglion, which lies on the outer surface of the heart wall. The ganglion is regulated by one pair of cardioinhibitory nerves and two pairs of cardioacceleratory nerves. Cardiac acceleration accompanied activation of the five pairs of swimmerets in the first to the fifth abdominal segments. The cardioacceleratory nerves were activated when swimmerets beat strongly. Activation of the cardioacceleratory nerves was caused by electrical stimuli to a nerve branch extending to the swimmerets from the first nerve root of the abdominal ganglion. Bursts of afferent impulses were recorded from the nerve branch of the first nerve root corresponding to periods of protractive and retractive swimmeret movements. Afferent impulses were recorded from the nerve branch when the articular membrane was artificially boosted up. Cardiac acceleration during active swimmeret movements in Squilla is attributable to a reflexive response triggered by the movements. Putative mechanoproprioceptors on the articular membrane between the sterna and basipodite in the swimmerets may be responsible for the cardioacceleratory reflex.  相似文献   

15.
Steroid hormones modulate motor circuits in both vertebrates and invertebrates. The insect Manduca sexta, with its well-characterized developmental and endocrinological history, is a useful model system in which to study these effects. Wandering is a stage-specific locomotor behavior triggered by the steroid hormone 20-hydroxyecdysone (20E), consisting of crawling and burrowing movements as the animal searches for a pupation site. This study was undertaken to determine whether the wandering motor pattern is activated by direct action of 20E on the CNS. 20E acts on the isolated larval nervous system to induce a fictive motor pattern showing features of crawling and burrowing. The latency of the response to 20E is long, suggestive of a genomic mechanism of action. The abdominal motoneurons or segmental pattern generating circuits are unlikely to be the primary targets of 20E action in inducing fictive wandering. Exposure of the segmental ganglia alone to hormone did not evoke fictive wandering. Therefore, as suggested by an earlier study, the likely site of 20E action is within the brain.  相似文献   

16.
The mechanosensory innervation of the lobster (Homarus americanus) swimmeret was examined by electrophysiologically recording afferent spike responses initiated by localized mechanical stimulation of the caudal surface of the swimmeret. Two functional groups of subcuticular hypodermal mechanoreceptors innervate the swimmeret. Afferents of one group innervate the small discrete "ridges" of calcified cuticle lining the margins of both swimmeret rami. Putative ridge receptors are bipolar sensory neurons responding phasically to deformation of the ridge cuticle with the number and frequency of impulses produced dependent on stimulus strength and velocity. Afferents of the second group, which innervate substantial areas of hypodermis underlying the soft, flexible cuticular regions of the swimmeret, were designated "wide-field" hypodermal mechanoreceptors. These neurons have multiterminal receptive fields and respond phaso-tonically to cuticular distortion. The response properties of both types of hypodermal mechanoreceptors imply that they are activated during the characteristic beating movements of the swimmerets.  相似文献   

17.
Adults of the nudibranch mollusc Tritonia diomedea crawl using mucociliary locomotion. Crawling is controlled in part by the large Pedal 5 (Pd5) and Pedal 6 (Pd6) neurons that produce Tritonia Pedal peptides (TPeps). TPeps elicit an increase in ciliary beat frequency, thereby increasing crawling speed. In adults of T. diomedea, an extensive network of TPep‐containing neurites adjacent to the basement membrane of the pedal epithelium delivers TPeps to the ciliated cells. In this study, we show that diverse nudibranchs all have a pattern of TPep‐like immunoreactivity similar to that of T. diomedea, with thin tracts of TPep‐like immunoreactive (TPep‐LIR) neurites projecting to the epithelial layer. We also show that members of two non‐nudibranch gastropod species have a pattern of TPep‐innervation similar to that of the nudibranchs. In addition, we characterized two pairs of motor neurons in adults of the nudibranch Armina californica that are possible homologues of the Pd5 and Pd6 cells in T. diomedea. Activity in one of these pairs, the Pedal Peptidergic Dorsal 1 (PPD1) cells, was correlated with mucociliary locomotion. The second pair, the Pedal Peptidergic Ventral 1 cells, shared synchronous synaptic input with the PPD1 cells, a pattern consistent with the shared synaptic input of the T. diomedea Pd5 and Pd6 cells. These findings suggest that the roles of the Pd5 and Pd6 cells as mucociliary motor neurons in nudibranchs are conserved evolutionarily. Additionally, the extensive network of TPep‐LIR neurites seen in the foot of T. diomedea appears likely to be a common feature among gastropods.  相似文献   

18.
Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We created Drosophila larvae that express green fluorescent protein (GFP) and a shibire(ts1) (shi(ts1)) transgene (a temperature-sensitive neuronal silencer) in small numbers of randomly selected cholinergic neurons. These larvae were screened for aberrant behavior at an elevated temperature (31-32°C). Among larvae with abnormal locomotion or sensory-motor responses, some had very small numbers of GFP-labeled temperature-sensitive interneurons. Labeled ascending interneurons projecting from the abdominal ganglia to specific brain neuropile compartments emerged as candidates for mediation of larval locomotion. Random targeting of small sets of neurons for functional evaluation, together with anatomical mapping of their processes, provides a tool for identifying the regions of the central nervous system that are required for normal locomotion. We discuss the limitations and advantages of this approach to discovery of interneurons that regulate motor behavior.  相似文献   

19.
Halorhodopsin (NpHR), a light-driven microbial chloride pump, enables silencing of neuronal function with superb temporal and spatial resolution. Here, we generated a transgenic line of Drosophila that drives expression of NpHR under control of the Gal4/UAS system. Then, we used it to dissect the functional properties of neural circuits that regulate larval peristalsis, a continuous wave of muscular contraction from posterior to anterior segments. We first demonstrate the effectiveness of NpHR by showing that global and continuous NpHR-mediated optical inhibition of motor neurons or sensory feedback neurons induce the same behavioral responses in crawling larvae to those elicited when the function of these neurons are inhibited by Shibire(ts), namely complete paralyses or slowed locomotion, respectively. We then applied transient and/or focused light stimuli to inhibit the activity of motor neurons in a more temporally and spatially restricted manner and studied the effects of the optical inhibition on peristalsis. When a brief light stimulus (1-10 sec) was applied to a crawling larva, the wave of muscular contraction stopped transiently but resumed from the halted position when the light was turned off. Similarly, when a focused light stimulus was applied to inhibit motor neurons in one or a few segments which were about to be activated in a dissected larva undergoing fictive locomotion, the propagation of muscular constriction paused during the light stimulus but resumed from the halted position when the inhibition (>5 sec) was removed. These results suggest that (1) Firing of motor neurons at the forefront of the wave is required for the wave to proceed to more anterior segments, and (2) The information about the phase of the wave, namely which segment is active at a given time, can be memorized in the neural circuits for several seconds.  相似文献   

20.
The output of a neuronal network results generally from both the properties of the component neurons and their synaptic relationships. This article aims at synthesizing various results obtained on the neural network generating locomotion in vitro. In the preparation used, consisting of the last three thoracic ganglia (3–5) along with motor nerves from the 5th leg ganglion to the promotor, remotor, levator and depressor muscles, motor nerve recordings generally revealed only tonic activity in several different motoneurons (MNs). However, rhythmic activity can be obtained by the use of cholinergic agents such as the oxotremorine (Oxo) superfused in the bath (5 × 10−5 M). If Oxo is pressure-ejected locally in the ganglion, it is possible, depending upon the locus where the drug is applied, to elicit a rhythmic activity restricted to a group of antagonistic MNs. To analyze how cholinergic agents are able to induce such rhythmic activity, very small volumes of drug (50–200 pl), were applied close to the recording electrode. Two types of depolarizing response occurred: a fast large amplitude depolarization (5–20 mV) and a long lasting (10 s to several minutes) low amplitude depolarization (1–3 mV). These responses persisted in the presence of TTX and Co2+. The transient initial depolarization is a mixed nicotinic and muscarinic voltage-independent response during which the input resistance decreases by 20 to 40%. In contrast, the long lasting component is voltage-dependent, exclusively muscarinic and associated to a 5–10% increase of input resistance due to the closing of a K+ conductance that is active at the resting Vm, and totally suppressed at holding potentials below −70 mV. More generally, K+ currents activated at resting potential are responsible for membrane potential stability. The injection of TEA, a blocker of the K+ currents, through the recording electrode is able to unmask plateaus above a threshold depolarization. These plateaus are TTX-sensitive but persist in the presence of Ca2+ channel blockers. Moreover, in 10% of TEA-filled MNs a spontaneous pacemaker activity was revealed. The organization of the locomotor network is also based upon connections between MNs and INs. Within a MN pool, connections are only loosely established, appearing to consist mainly of electrical coupling. Inhibitory synaptic connections between MNs of opposite pools are mediated by chloride channels. However, the neurotransmitter involved could be either GABA or glutamate. Therefore, at the level of a given joint, a basic rhythm occurs due to both motoneuronal membrane properties and motoneuronal connectivity. However, the coordination of all MNs of an entire leg during fictive walking activity requires the involvement of INs. Based upon these data, we propose a two-stage model of the locomotor network organization: a joint motoneuronal level and a whole leg interneuronal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号