首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylinositol transfer proteins (PITPs) can bind specifically and transfer a single phosphatidylinositol (PI) molecule between phospholipid membranes in an ATP-independent manner in vitro. PITPs exist in all the eukaryotic systems from yeast to human. PITP plays an essential role in intracellular vesicle flow and inositol lipid signaling. The crystal structure of yeast PITP Sec14p reveals a large hydrophobic pocket to accommodate the acyl chains of phospholipid molecules. At the opening of the pocket, a hydrogen bond network may render Sec14p the binding specificity to PI molecules. The structure suggests that the PI-binding ability may play an important role in the in vivo function of PITPs.  相似文献   

2.
Phosphatidylinositol transfer proteins (PITPs) are versatile proteins required for signal transduction and membrane traffic. The best characterized mammalian PITPs are the Class I PITPs, PITPα (PITPNA) and PITPβ (PITPNB), which are single domain proteins with a hydrophobic cavity that binds a phosphatidylinositol (PI) or phosphatidylcholine molecule. In this study, we report the lipid binding properties of an uncharacterized soluble PITP, phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) (alternative name, RdgBβ), of the Class II family. We show that the lipid binding properties of this protein are distinct to Class I PITPs because, besides PI, RdgBβ binds and transfers phosphatidic acid (PA) but hardly binds phosphatidylcholine. RdgBβ when purified from Escherichia coli is preloaded with PA and phosphatidylglycerol. When RdgBβ was incubated with permeabilized HL60 cells, phosphatidylglycerol was released, and PA and PI were now incorporated into RdgBβ. After an increase in PA levels following activation of endogenous phospholipase D or after addition of bacterial phospholipase D, binding of PA to RdgBβ was greater at the expense of PI binding. We propose that RdgBβ, when containing PA, regulates an effector protein or can facilitate lipid transfer between membrane compartments.  相似文献   

3.
Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi secretory function. It is widely accepted, though unproven, that phosphatidylinositol transfer between membranes represents the physiological activity of phosphatidylinositol transfer proteins (PITPs). We report that Sec14pK66,239A is inactivated for phosphatidylinositol, but not phosphatidylcholine (PC), transfer activity. As expected, Sec14pK66,239A fails to meet established criteria for a PITP in vitro and fails to stimulate phosphoinositide production in vivo. However, its expression efficiently rescues the lethality and Golgi secretory defects associated with sec14-1ts and sec14 null mutations. This complementation requires neither phospholipase D activation nor the involvement of a novel class of minor yeast PITPs. These findings indicate that PI binding/transfer is remarkably dispensable for Sec14p function in vivo.  相似文献   

4.
Phosphatidylinositol transfer proteins (PITPs) are lipid binding proteins that can catalyse the transfer of phosphatidylinositol (PI) from membranes enriched in PI to PI-deficient membranes. Three soluble forms of PITP of 35--38 kDa (PITP alpha, PITP beta and rdgB beta) and two larger integral proteins of 160 kDa (rdgB alpha I and II), which contain a PITP domain, are found in mammalian cells. PITPs are intimately associated with the compartmentalised synthesis of different phosphorylated inositol lipids. PI is the primary inositol lipid that is synthesised at the endoplasmic reticulum and is further phosphorylated in distinct membrane compartments by many specific lipid kinases to generate seven phosphorylated inositol lipids which are required for both signalling and for membrane traffic. PITPs play essential roles in both signalling via phospholipase C and phosphoinositide 3-kinases and in multiple aspects of membrane traffic including regulated exocytosis and vesicle biogenesis.  相似文献   

5.
Monomeric transport of lipids is carried out by a class of proteins that can shield a lipid from the aqueous environment by binding the lipid in a hydrophobic cavity. One such group of proteins is the phosphatidylinositol transfer proteins (PITP) that can bind phosphatidylinositol and phosphatidylcholine and transfer them from one membrane compartment to another. PITPs are found in both unicellular and multicellular organisms but not bacteria. In mice and humans, the PITP domain responsible for lipid transfer is found in five proteins, which can be classified into two classes based on sequence. Class I PITPs comprises two family members, alpha and beta, small 35 kDa proteins with a single PITP domain which are ubiquitously expressed. Class IIA PITPs (RdgBalphaI and II) are larger proteins possessing additional domains that target the protein to membranes and are only able to bind lipids but not mediate transfer. Finally, Class IIB PITP (RdgBbeta) is similar to Class I in size (38 kDa) and is also ubiquitously expressed. Class III PITPs, exemplified by the Sec14p family, are found in yeast and plants but are unrelated in sequence and structure to Class I and Class II PITPs. In this review we discuss whether PITP proteins are passive transporters or are regulated proteins that are able to couple their transport and binding properties to specific biological functions including inositol lipid signalling and membrane turnover.  相似文献   

6.
PITPs (phosphatidylinositol transfer proteins) are characterized by the presence of the PITP domain whose biochemical properties of binding and transferring PI (phosphatidylinositol) are well studied. Despite their wide-spread expression in both unicellular and multicellular organisms, they remain functionally uncharacterized. An emerging theme is that individual PITPs play highly specific roles in either membrane trafficking or signal transduction. To identify specific roles for PITPs, identification of interacting molecules would shed light on their molecular function. In the present paper, we describe binding partners for the class IIB PITP RdgBβ (retinal degeneration type?Bβ). RdgBβ is a soluble PITP but is unique in that it contains a region of disorder at its C-terminus following its defining N-terminal PITP domain. The C-terminus of RdgBβ is phosphorylated at two serine residues, Ser274 and Ser299, which form a docking site for 14-3-3 proteins. Binding to 14-3-3 proteins protects RdgBβ from degradation that occurs at the proteasome after ubiquitination. In addition to binding 14-3-3, the PITP domain of RdgBβ interacts with the Ang II (angiotensin II)-associated protein ATRAP (Ang II receptor-associated protein). ATRAP is also an interacting partner for the AT1R (Ang II type?1 receptor). We present a model whereby RdgBβ functions by being recruited to the membrane by ATRAP and release of 14-3-3 from the C-terminus allows the disordered region to bind a second membrane to create a membrane bridge for lipid transfer, possibly under the control of Ang II.  相似文献   

7.
Sec14-like phosphatidylinositol transfer proteins (PITPs) play important biological functions in integrating multiple aspects of intracellular lipid metabolism with phosphatidylinositol-4-phosphate signaling. As such, these proteins offer new opportunities for highly selective chemical interference with specific phosphoinositide pathways in cells. The first and best characterized small molecule inhibitors of the yeast PITP, Sec14, are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs), and a hallmark feature of NPPMs is their exquisite targeting specificities for Sec14 relative to other closely related Sec14-like PITPs. Our present understanding of Sec14::NPPM binding interactions is based on computational docking and rational loss-of-function approaches. While those approaches have been informative, we still lack an adequate understanding of the basis for the high selectivity of NPPMs among closely related Sec14-like PITPs. Herein, we describe a Sec14 motif, which we term the VV signature, that contributes significantly to the NPPM sensitivity/resistance of Sec14-like phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer proteins. The data not only reveal previously unappreciated determinants that govern Sec14-like PITP sensitivities to NPPMs, but enable predictions of which Sec14-like PtdIns/PtdCho transfer proteins are likely to be NPPM resistant or sensitive based on primary sequence considerations. Finally, the data provide independent evidence in support of previous studies highlighting the importance of Sec14 residue Ser173 in the mechanism by which NPPMs engage and inhibit Sec14-like PITPs.  相似文献   

8.
PITPs [PI (phosphatidylinositol) transfer proteins] bind and transfer PI between intracellular membranes and participate in many cellular processes including signalling, lipid metabolism and membrane traffic. The largely uncharacterized PITP RdgBβ (PITPNC1; retinal degeneration type B β), contains a long C-terminal disordered region following its defining N-terminal PITP domain. In the present study we report that the C-terminus contains two tandem phosphorylated binding sites (Ser(274) and Ser(299)) for 14-3-3. The C-terminus also contains PEST sequences which are shielded by 14-3-3 binding. Like many proteins containing PEST sequences, the levels of RdgBβ are regulated by proteolysis. RdgBβ is degraded with a half-life of 4 h following ubiquitination via the proteasome. A mutant RdgBβ which is unable to bind 14-3-3 is degraded even faster with a half-life of 2 h. In vitro, RdgBβ is 100-fold less active than PITPα for PI transfer, and RdgBβ proteins (wild-type and a mutant that cannot bind 14-3-3) expressed in COS-7 cells or endogenous proteins from heart cytosol do not exhibit transfer activity. When cells are treated with PMA, the PITP domain of RdgBβ interacts with the integral membrane protein ATRAP (angiotensin II type I receptor-associated protein; also known as AGTRAP) causing membrane recruitment. We suggest that RdgBβ executes its function following recruitment to membranes via its PITP domain and the C-terminal end of the protein could regulate entry to the hydrophobic cavity.  相似文献   

9.
Eukaryotic phosphatidylinositol transfer proteins (PITPs) are composed predominantly of small ( approximately 32 kDa) soluble proteins that bind and transfer a single phospholipid, normally phosphatidylinositol or phosphatidycholine. Two forms, PITPalpha and PITPbeta, which share approximately 80% amino acid sequence similarity, are known. Rat PITPalpha was labeled at specific single reactive Cys residues with I-AEDANS and used to examine PITP-membrane interactions. Upon binding to phospholipid vesicles, PITP labeled with AEDANS at the C-terminus, a region postulated to be involved in membrane binding, shows significant decreases in both steady-state and dynamic fluorescence anisotropy. In contrast, PITPs labeled with AEDANS at sites located distal to the C-terminus show increases in both steady-state and dynamic anisotropy. These results suggest that interaction of PITP with membrane surfaces leads to significant alterations in conformation and perhaps melting of the C-terminal helix.  相似文献   

10.
Of many lipid transfer proteins identified, all have been implicated in essential cellular processes, but the activity of none has been demonstrated in intact cells. Among these, phosphatidylinositol transfer proteins (PITP) are of particular interest as they can bind to and transfer phosphatidylinositol (PtdIns)--the precursor of important signalling molecules, phosphoinositides--and because they have essential functions in neuronal development (PITPalpha) and cytokinesis (PITPbeta). Structural analysis indicates that, in the cytosol, PITPs are in a 'closed' conformation completely shielding the lipid within them. But during lipid exchange at the membrane, they must transiently 'open'. To study PITP dynamics in intact cells, we chemically targeted their C95 residue that, although non-essential for lipid transfer, is buried within the phospholipid-binding cavity, and so, its chemical modification prevents PtdIns binding because of steric hindrance. This treatment resulted in entrapment of open conformation PITPs at the membrane and inactivation of the cytosolic pool of PITPs within few minutes. PITP isoforms were differentially inactivated with the dynamics of PITPbeta faster than PITPalpha. We identify two tryptophan residues essential for membrane docking of PITPs.  相似文献   

11.
Phosphatidylinositol transfer proteins (PITP) are abundant cytosolic proteins found in all mammalian cells. Two cytosolic isoforms of 35 and 36 kDa (PITP alpha and PITP beta) have been identified which share 77% identity. These proteins are characterized by having a single phospholipid binding site which exhibits dual headgroup specificity. The preferred lipid that can occupy the site can be either phosphatidylinositol (PI) or phosphatidylcholine (PC). In addition, PITP beta can also bind sphingomyelin. A second characteristic of these proteins is the ability to transfer PI and PC (or SM) from one membrane compartment to another in vitro. The function of PITP in mammalian cells has been examined mainly using reconstitution studies utilizing semi-intact cells or cell-free systems. From such analyses, a requirement for PITP has been identified in phospholipase C-mediated phosphatidylinositol bisphosphate (PI(4,5)P2) hydrolysis, in phosphoinositide 3-kinase catalyzed PIP3 generation, in regulated exocytosis, in the biogenesis of secretory granules and vesicles and in intra-golgi transport. Studies aimed at elucidating the mechanism of action of PITP in each of these seemingly disparate processes have yielded a singular theme: the activity of PITP stems from its ability to transfer PI from its site of synthesis to sites of cellular activity. This function was predicted from its in vitro characteristics. The second feature of PITP that was not predicted is the ability to stimulate the local synthesis of several phosphorylated forms of PI including PI(4)P, PI(4,5)P2, PI(3)P, PI(3,4,5)P3 by presenting PI to the lipid kinases involved in phosphoinositide synthesis. We conclude that PITP contributes in multiple aspects of cell biology ranging from signal transduction to membrane trafficking events where a central role for phosphoinositides is recognized either as a substrate or as an intact lipid signalling molecule.  相似文献   

12.
Phosphatidylinositol is the parent lipid for the synthesis of seven phosphorylated inositol lipids and each of them play specific roles in numerous processes including receptor-mediated signalling, actin cytoskeleton dynamics and membrane trafficking. PI synthesis is localised to the endoplasmic reticulum (ER) whilst its phosphorylated derivatives are found in other organelles where the lipid kinases also reside. Phosphorylation of PI to phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) at the plasma membrane and to phosphatidylinositol 4-phosphate (PI4P) at the Golgi are key events in lipid signalling and Golgi function respectively. Here we review a family of proteins, phosphatidylinositol transfer proteins (PITPs), that can mobilise PI from the ER to provide the substrate to the resident kinases for phosphorylation. Recent studies identify specific and overlapping functions for the three soluble PITPs (PITPα, PITPβ and PITPNC1) in phospholipase C signalling, neuronal function, membrane trafficking, viral replication and in cancer metastases.  相似文献   

13.
Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi function and cell viability. We now report a characterization of five yeast SFH (Sec Fourteen Homologue) proteins that share 24-65% primary sequence identity with Sec14p. We show that Sfh1p, which shares 64% primary sequence identity with Sec14p, is nonfunctional as a Sec14p in vivo or in vitro. Yet, SFH proteins sharing low primary sequence similarity with Sec14p (i.e., Sfh2p, Sfh3p, Sfh4p, and Sfh5p) represent novel phosphatidylinositol transfer proteins (PITPs) that exhibit phosphatidylinositol- but not phosphatidylcholine-transfer activity in vitro. Moreover, increased expression of Sfh2p, Sfh4p, or Sfh5p rescues sec14-associated growth and secretory defects in a phospholipase D (PLD)-sensitive manner. Several independent lines of evidence further demonstrate that SFH PITPs are collectively required for efficient activation of PLD in vegetative cells. These include a collective requirement for SFH proteins in Sec14p-independent cell growth and in optimal activation of PLD in Sec14p-deficient cells. Consistent with these findings, Sfh2p colocalizes with PLD in endosomal compartments. The data indicate that SFH gene products cooperate with "bypass-Sec14p" mutations and PLD in a complex interaction through which yeast can adapt to loss of the essential function of Sec14p. These findings expand the physiological repertoire of PITP function in yeast and provide the first in vivo demonstration of a role for specific PITPs in stimulating activation of PLD.  相似文献   

14.
The alpha isoforms of mammalian phosphatidylinositol transfer protein (PITP) contain four conserved Cys residues. In this investigation, a series of thiol-modifying reagents, both alkylating and mixed disulfide-forming, was employed to define the accessibility of these residues and to evaluate their role in protein-mediated intermembrane phospholipid transport. Isolation and analysis of chemically modified peptides and site-directed mutagenesis of each Cys residue to Ala were also performed. Soluble, membrane-associated, and denatured preparations of wild-type and mutant rat PITPs were studied. Under denaturing conditions, all four Cys residues could be detected spectrophotometrically by chemical reaction with 4,4'-dipyridyl disulfide or 5,5'-dithiobis(2-nitrobenzoate). In the native protein, two of the four Cys residues were sensitive to some but not all thiol-modifying reagents, with discrimination based on the charge and hydrophobicity of the reagent and the conformation of the protein. With the soluble conformation of PITP, achieved in the absence of phospholipid vesicles, the surface-exposed Cys(188) was chemically modified without consequence to lipid transfer activity. Cys(188) exhibited an apparent pK(a) of 7.6. The buried Cys(95), which constitutes part of the phospholipid substrate binding site, was covalently modified upon transient association of PITP with a membrane surface. The Cys-to-Ala mutations showed that neither Cys(95) nor Cys(188) was essential for lipid transfer activity. However, chemical modification of Cys(95) resulted in the loss of lipid transfer activity. These results demonstrate that the Cys residues of PITP can be assigned to several different classes of chemical reactivity. Of particular interest is Cys(95), whose sulfhydryl group becomes exposed to modification in the membrane-associated conformation of PITP. Furthermore, the inhibition of PITP activity by thiol-modifying reagents is a result of steric hindrance of phospholipid substrate binding.  相似文献   

15.
The structurally related mammalian α and β isoforms of phosphatidylinositol (PtdIns) transfer protein (PITP) bind reversibly a single phospholipid molecule, preferably PtdIns or phosphatidylcholine (PtdCho), and transport that lipid between membrane surfaces. PITPβ, but not PITPα, is reported extensively in the scientific literature to exhibit the additional capacity to bind and transport sphingomyelin (CerPCho). We undertook a detailed investigation of the lipid binding and transfer specificity of the soluble mammalian PITP isoforms. We employed a variety of donor and acceptor membrane lipid compositions to determine the sensitivity of recombinant rat PITPα and PITPβ isoforms toward PtdIns, PtdCho, CerPCho, and phosphatidate (PtdOH). Results indicated often striking differences in protein–phospholipid and protein–membrane interactions. We demonstrated unequivocally that both isoforms were capable of binding and transferring CerPCho; we confirmed that the β isoform was the more active. The order of transfer specific activity was similar for both isoforms: PtdIns>PtdCho>CerPCho≫PtdOH. Independently, we verified the binding of CerPCho to both isoforms by showing an increase in holoprotein isoelectric point following the exchange of protein-bound phosphatidylglycerol for membrane-associated CerPCho. We conclude that PITPα and PITPβ are able to bind and transport glycero- and sphingophospholipids.  相似文献   

16.
Sec14, the major yeast phosphatidylcholine (PC)/phosphatidylinositol (PI) transfer protein (PITP), coordinates PC and PI metabolism to facilitate an appropriate and essential lipid signaling environment for membrane trafficking from trans-Golgi membranes. The Sec14 PI/PC exchange cycle is essential for its essential biological activity, but fundamental aspects of how this PITP executes its lipid transfer cycle remain unknown. To address some of these outstanding issues, we applied time-resolved small-angle neutron scattering for the determination of protein-mediated intervesicular movement of deuterated and hydrogenated phospholipids in vitro. Quantitative analysis by small-angle neutron scattering revealed that Sec14 PI- and PC-exchange activities were sensitive to both the lipid composition and curvature of membranes. Moreover, we report that these two parameters regulate lipid exchange activity via distinct mechanisms. Increased membrane curvature promoted both membrane binding and lipid exchange properties of Sec14, indicating that this PITP preferentially acts on the membrane site with a convexly curved face. This biophysical property likely constitutes part of a mechanism by which spatial specificity of Sec14 function is determined in cells. Finally, wild-type Sec14, but not a mixture of Sec14 proteins specifically deficient in either PC- or PI-binding activity, was able to effect a net transfer of PI or PC down opposing concentration gradients in vitro.  相似文献   

17.
Phosphatidylinositol transfer proteins (PITPs) regulate the interface between signal transduction, membrane-trafficking, and lipid metabolic pathways in eukaryotic cells. The best characterized mammalian PITPs are PITP alpha and PITP beta, two highly homologous proteins that are encoded by distinct genes. Insights into PITP alpha and PITP beta function in mammalian systems have been gleaned exclusively from cell-free or permeabilized cell reconstitution and resolution studies. Herein, we report for the first time the use of genetic approaches to directly address the physiological functions of PITP alpha and PITP beta in murine cells. Contrary to expectations, we find that ablation of PITP alpha function in murine cells fails to compromise growth and has no significant consequence for bulk phospholipid metabolism. Moreover, the data show that PITP alpha does not play an obvious role in any of the cellular activities where it has been reconstituted as an essential stimulatory factor. These activities include protein trafficking through the constitutive secretory pathway, endocytic pathway function, biogenesis of mast cell dense core secretory granules, and the agonist-induced fusion of dense core secretory granules to the mast cell plasma membrane. Finally, the data demonstrate that PITP alpha-deficient cells not only retain their responsiveness to bulk growth factor stimulation but also retain their pluripotency. In contrast, we were unable to evict both PITP beta alleles from murine cells and show that PITP beta deficiency results in catastrophic failure early in murine embryonic development. We suggest that PITP beta is an essential housekeeping PITP in murine cells, whereas PITP alpha plays a far more specialized function in mammals than that indicated by in vitro systems that show PITP dependence.  相似文献   

18.
19.
RdgB proteins: functions in lipid homeostasis and signal transduction   总被引:1,自引:0,他引:1  
The RdgBs are a group of evolutionarily conserved molecules that contain a phosphatidylinositol transfer protein (PITP) domain. However in contrast to classical PITPs (PITPalpha) with whom they share the conserved PITP domain, these proteins also contain several additional sequence elements whose functional significance remains unknown. The founding member of the family DrdgB alpha (Drosophila rdgB) appears to be essential for sensory transduction and maintenance of ultra structure in photoreceptors (retinal sensory neurons). Although proposed to support the maintenance of phosphatidylinositol 4, 5 bisphosphate [PI (4, 5) P(2)] levels during G-protein coupled phospholipase C activity in these cells, the biochemical mechanism of DrdgB alpha function remains unresolved. More recently, a mammalian RdgB protein has been implicated in the maintenance of diacylglycerol (DAG) levels and secretory function at Golgi membranes. In this review we discuss existing work on the function of RdgB proteins and set out future challenges in understanding this group of lipid transfer proteins.  相似文献   

20.
Phosphoinositides function in a diverse array of cellular activities. They include a role as substrate for lipid kinases and phospholipases to generate second messengers, regulators of the cytoskeleton, of enzymes and of ion channels, and docking sites for reversible recruitment of proteins to membranes. Mammalian phosphatidylinositol transfer proteins, PITPalpha and PITPbeta are paralogs that share 77% sequence identity and contain a hydrophobic cavity that can sequester either phosphatidylinositol or phosphatidylcholine. A string of 11 amino acid residues at the C-terminal acts as a "lid" which shields the lipid from the aqueous environment. PITPs in vitro can facilitate inter-membrane lipid transfer and this requires the movement of the "lid" to allow the lipid cargo to be released. Thus PITPs are structurally designed for delivering lipid cargo and could thus participate in cellular events that are dependent on phosphatidylinositol or derivatives of phosphatidylinositol. Phosphatidylinositol, the precursor for all phosphoinositides is synthesised at the endoplasmic reticulum and its distribution to other organelles could be facilitated by PITPs. Here we highlight recent studies that report on the three-dimensional structures of the different PITP forms and suggest how PITPs are likely to dock at the membrane surface for lipid delivery and extraction. Additionally we discuss whether PITPs are important regulators of sphingomyelin metabolism, and finally describe recent studies that link the association of PITPs with diverse functions including membrane traffic at the Golgi, neurite outgrowth, cytokinesis and stem cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号