首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Site characterization and remediation activities were performed at a former crude oil and natural gas production facility prior to redevelopment of the site. Field activities included delineation, excavation and segregation of approximately 1,250,000 m3 of soil impacted by total petroleum hydrocarbons (TPH) and the aromatic volatile organic compounds (VOCs) benzene, toluene, ethylbenzene, and xylenes (hereafter, collectively referred to as BTEX). Petroleum hydrocarbon chain length information was used to determine whether remediation was required in impacted areas, because the site-specific cleanup values for TPH compounds, established by the California State Regional Water Quality Control Board (RWQCB), were based on hydrocarbon chain length. Site-specific cleanup levels were also established by the RWQCB for BTEX. Subsurface investigation activities performed at the site indicated that the mean percentage of condensate and TPH compounds in the gasoline range was significantly greater at depths ranging from 4.6 to 18 m than in shallower samples. There was no significant difference in the mean concentration of BTEX compounds and mean percentage of diesel range and heavier hydrocarbons with depth. The occurrence of BTEX, diesel range, and heavier hydrocarbons at depth may result from preferential pathways for downward migration of contaminants, including blown out wells, abandoned wellbores, and the presence of faults. Vapor phase diffusion may also be a major transport mechanism controlling movement of BTEX compounds beneath the site.  相似文献   

2.
Phytoremediation: an overview of metallic ion decontamination from soil   总被引:23,自引:0,他引:23  
In recent years, phytoremediation has emerged as a promising ecoremediation technology, particularly for soil and water cleanup of large volumes of contaminated sites. The exploitation of plants to remediate soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Many modern tools and analytical devices have provided insight into the selection and optimization of the remediation process by plant species. This review describes certain factors for the phytoremediation of metal ion decontamination and various aspects of plant metabolism during metallic decontamination. Metal-hyperaccumulating plants, desirable for heavily polluted environments, can be developed by the introduction of novel traits into high biomass plants in a transgenic approach, which is a promising strategy for the development of effective phytoremediation technology. The genetic manipulation of a phytoremediator plant needs a number of optimization processes, including mobilization of trace elements/metal ions, their uptake into the root, stem and other viable parts of the plant and their detoxification and allocation within the plant. This upcoming science is expanding as technology continues to offer new, low-cost remediation options.  相似文献   

3.
The goal of this study was to provide material property data for the cement/bone composite resulting from the introduction of PMMA bone cement into human vertebral bodies. A series of quasistatic tensile and compressive mechanical tests were conducted using cement/bone composite structures machined from cement-infiltrated vertebral bodies. Experiments were performed both at room temperature and at body temperature. We found that the modulus of the composite structures was lower than bulk cement (p<0.0001). For compression at 37( composite function)C: composite =2.3+/-0.5GPa, cement =3.1+/-0.2GPa; at 23( composite function)C: composite =3.0+/-0.3GPa, cement =3.4+/-0.2GPa. Specimens tested at room temperature were stiffer than those tested at body temperature (p=0.0004). Yield and ultimate strength factors for the composite were all diminished (55-87%) when compared to cement properties. In general, computational models have assumed that cement/bone composite had the same modulus as cement. The results of this study suggest that computational models of cement infiltrated vertebrae and cemented arthroplasties could be improved by specifying different material properties for cement and cement/bone composite.  相似文献   

4.
Detecting the disappearance of active leks is the most efficient way to determine large declines in greater sage-grouse (Centrocercus urophasianus) populations; thus, understanding factors that influence lek abandonment is critical. We evaluated factors that may have influenced the probability of sage-grouse lek abandonment in the Bighorn Basin (BHB) of north-central Wyoming from 1980 to 2009. Our objective was to examine lek abandonment based on landscape characteristics that explain differences between occupied and unoccupied leks. We evaluated lek abandonment from 144 occupied and 39 unoccupied leks from the Wyoming Game and Fish Department lek database with sufficient data for our 30-year analysis. We conducted our analysis with binary logistic regression using landscape predictor variables obtained from geographic coverages at 5 scales (1.0-, 3.2-, 4.0-, 5.0-, and 6.4-km radii around leks) to evaluate how these disturbances have influenced lek abandonment. Coverages included anthropogenic characteristics such as agricultural development, oil and gas development, prescribed burned treatments, and roads; and environmental characteristics such as vegetation attributes and wildfire. Our combined model included the number of oil and gas wells in a 1.0-km radius, percent area of wildfire in a 1.0-km radius, and variability in shrub height in a 1.0-km radius around sage-grouse leks. Abandoned (unoccupied) leks had 1.1-times the variability of shrub height in a 1.0-km radius, 3.1-times the percentage of wildfire in a 1.0-km radius, and 10.3-times the number of oil and gas wells in a 1.0-km radius compared to occupied leks. The model-averaged odds of lek persistence with every 1 unit increase in oil and gas wells within a 1.0-km radius was 0.66 (90% CI: 0.37–0.94), odds with every 1% increase in wildfire in a 1.0-km radius was 0.99 (90% CI: 0.85–1.12), and odds with every 1 unit increase in the standard deviation of shrub height within a 1.0-km radius around a lek was 0.77 (90% CI: 0.45–1.08). Because the 90% confidence intervals around the odds ratios of wells did not overlap 1.0, we suggest this predictor variable was most influential in our model-averaged estimates. The BHB has lower developed reserves of oil and gas than many other regions; however, our study supports findings from other studies that demonstrate energy development increases lek abandonment. Our findings indicate conservation efforts should be focused on minimizing well development and implementing wildfire suppression tactics near active sage-grouse leks. © 2012 The Wildlife Society.  相似文献   

5.
Vertebroplasty forms a porous PMMA/bone composite which was shown to be weaker and less stiff than pure PMMA. It is not known what determines the mechanical properties of such composites in detail. This study investigated the effects of bone volume fraction (BV/TV), cement porosity (PV/(TV-BV), PV…pore volume) and cement stiffness. Nine human vertebral bodies were augmented with either standard or low-modulus PMMA cement and scanned with a HR-pQCT system before and after augmentation. Fourteen cylindrical PMMA/bone biopsies were extracted from the augmented region, scanned with a micro-CT system and tested in compression until failure. Micro-finite element (FE) models of the complete biopsies, of the trabecular bone alone as well as of the porous cement alone were generated from CT images to gain more insight into the role of bone and pores. PV/(TV-BV) and experimental moduli of standard/low-modulus cement (R(2)=0.91/0.98) as well as PV/(TV-BV) and yield stresses (R(2)=0.92/0.83) were highly correlated. No correlation between BV/TV (ranging from 0.057 to 0.138) and elastic moduli was observed (R(2)< 0.05). Interestingly, the micro-FE models of the porous cement alone reproduced the experimental elastic moduli of the standard/low-modulus cement biopsies (R(2)=0.75/0.76) more accurately than the models with bone (R(2)=0.58/0.31). In conclusion, the mechanical properties of the biopsies were mainly determined by the cement porosity and the cement material properties. The study showed that bone tissue inside the biopsies was mechanically "switched off" such that load was carried essentially by the porous PMMA.  相似文献   

6.
Quantitative understanding of mechanical actuation of intricate Pneumatic Artificial Muscle (PAM) actuators is technically required in control system design for effective real-time implementation.This paper presents mathematical modeling of the PAM driven by hydrogen-gas pressure due to absorption and desorption of metal hydride.Empirical models of both mechanical actuation of industrial PAM and chemical reaction of the metal hydride-LaNi5 are derived systematically where their interactions comply with the continuity principle and energy balance in describing actual dynamic behaviors of the PAM actuator (PAM and hydriding/dehydriding-reaction bed).Simulation studies of mechanical actuation under various loads are conducted so as to present dynamic responses of the PAM actuators.From the promising results,it is intriguing that the heat input for the PAM actuator can be supplied to,or pumped from the reaction bed,in such a way that absorption and desorption of hydrogen gas take place,respectively,in controlling the pressure of hydrogen gas within the PAM actuator.Accordingly,this manipulation results in desired mechanical actuation of the PAM actuator in practical uses.  相似文献   

7.

Background

Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC.

Materials and Methods

The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated.

Results

CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC.

Conclusions

A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration.  相似文献   

8.
董彬 《生态科学》2012,31(6):683-687
文章通过对土壤重金属污染相关文献进行研究分析,从我国土壤重金属污染的现状、修复技术应用和研究前景等方面进行了系统综述,重点分析了我国土壤重金属污染修复技术的应用和研究前景。超富集植物修复是一种新兴的绿色生物技术,成本较低,易操作,是土壤污染治理的环境友好技术。微生物修复具有成本低、无二次污染、对环境影响小、效率高等特点,可在一定程度上带来经济效益和生态效益,是一种理想的绿色修复方法。并指出筛选和培育生物量大、适应性强、富集能力强、易栽培且具经济效益的超富集植物、利用大型真菌吸收和富集土壤重金属、组合运用多种修复技术、结合应用分子生物学技术和基因工程技术和加强土壤重金属污染修复效果的评价将是今后研究的重点和热点。  相似文献   

9.
The aquifer below an abandoned chemical plant in Hamburg, Germany, is heavily contaminated with chlorinated aromatic compounds, mainly chlorobenzenes. Preliminary evaluations made evident that pump-and-treat remediation of the site would be inefficient due to adsorption of the contaminants and the possible presence of dense nonaqueous phase liquid (DNAPL) in the aquifer. Other preliminary studies indicated that benzenes with a low degree of chlorination, which account for the bulk of the contamination in the aquifer, were aerobically degradable. Thus, in situ bioremediation using dissolved oxygen as an oxidant was proposed as an alternative to pump-and-treat remediation.

To assess the feasibility of bioremediation at this site, a pilot study was conducted on a 55 m x 30 m test plot that was equipped with two injection wells, six extraction wells, and 18 observation wells. Water saturated with oxygen using pure oxygen gas was injected for a period of 433 days.

Application of the three-dimensional reactive transport model, Transport, Biochemistry, and Chemistry (TBC), allowed the distinction between transport and reactive processes and the evaluation of oxygen consuming processes. Preliminary mass balance considerations had indicated that a significant portion of the injected oxygen was used for oxidation of inorganic compounds instead of the contaminants. The model calculations allowed quantification of these effects. Simulation results suggested that in situ bioremediation occurred at the site, but with an unacceptably low efficiency. Only 2% of the injected oxygen was used for contaminant degradation, while 63% was consumed by inorganic reductants, presumably mainly pyrite. Approximately 32% of the injected oxygen was extracted by the extraction wells and approximately 3% remained in the aquifer after the pilot study was completed.  相似文献   

10.
目的:磷酸钙骨水泥(Calcium phosphate cement,CPC)以其诸多优点正得到了越来越多的应用,但其较差的力学性能表现也限制了它的使用范围。本研究目的在于改善磷酸钙骨水泥的力学性能,同时评估改性后的磷酸钙骨水泥的其他性能。方法:通过丝素蛋白(Silk fibroin,SF)的矿化自组装方法制备丝素蛋白/羟基磷灰石复合物(silk fibroin/hydroxyapitite composite, SF/HA)。按照1%、2%、3%、4%的质量分数加入磷酸钙骨水泥中,与磷酸钙骨水泥组对比。比较内容包括力学强度、抗渍散性能及细胞毒性。结果:以丝素蛋白溶液为液相组的磷酸钙骨水泥强度大约为35MPa。随后随着添加丝素蛋白/羟基磷灰石复合物的质量分数从1%增至3%,磷酸钙骨水泥的强度逐渐增加(P〈0.05),最高约至45MPa。而当丝素蛋白/羟基磷灰石的质量分数达到4%时,磷酸钙骨水泥的强度较质量分数3%组小幅度下降至43MPa(P〈0.05)。以丝素蛋白溶液作为液相时,磷酸钙骨水泥的抗溃散能力也得到了加强。在MTT法测定细胞活力的对照实验中,无论是加入丝素蛋白溶液或丝素蛋白/羟基磷灰石复合物,都未观察到细胞毒性。结论:在磷酸钙骨水泥中加入3%质量分数的丝素蛋白/羟基磷灰石复合物,能显著提高磷酸钙骨水泥的抗压强度。而丝素蛋白溶液作为液相可改善磷酸钙骨水泥的抗溃散能力。同时,丝素蛋白和丝素蛋白/羟基磷灰石复合物都不表现出细胞毒性。更理想的力学强度和更强的抗溃散能力,大大扩展了磷酸钙骨水泥的应用范围。  相似文献   

11.
为提高重金属污染土壤可持续修复效能,研究生物炭与细菌对重金属污染土壤的协同修复作用。基于文献计量学分析及重金属污染土壤修复背景,总结了细菌与生物炭对土壤重金属的稳定化特征及菌炭间的相互作用,分析了单一生物炭或细菌对重金属污染土壤修复的局限性,强调了细菌-生物炭协同修复技术的优势,阐述了细菌与生物炭主要通过离子交换、固定作用、氧化还原作用和迁移作用等重要机制有效修复重金属污染土壤,揭示了细菌-生物炭协同作用在重金属污染土壤修复中的巨大应用价值。文献计量学研究表明,生物炭与细菌对重金属污染土壤的协同修复已得到广泛关注。目前认为:生物炭与细菌的协同作用可有效改良土壤理化性质及提高土壤修复效率,也可促进植物生长及植物修复进程;生物炭对细菌影响具有双重性质,可促进细菌生长,也可能对细菌产生毒害;细菌可改变生物炭的理化性质,进而强化生物炭的重金属固定性能;细菌协同生物炭联合修复重金属污染土壤过程中,生物炭主导吸附和固定,细菌则发挥活化和解毒等功能;优化细菌-生物炭组合形式,发展混合细菌与多种类生物炭协同技术,是复合重金属污染土壤可持续修复亟待解决的重要问题;进一步揭示细菌与生物炭对重金属污染土壤的耦合作用及长效作用机制,规避生物炭生产和应用中的潜在生态健康风险,研发新型高效能细菌与生物炭复合体是细菌协同生物炭可持续修复重金属污染土壤应用领域面临的挑战。  相似文献   

12.
Finite element (FE) models could be used for pre-clinical testing of cemented hip replacement implants against the damage accumulation failure scenario. To accurately predict mechanical failure, the models should accurately predict stresses and strains. This should be the case for various implants. In the current study, two FE models of composite hip reconstructions with two different implants were validated relative to experimental bone and cement strains. The objective was an overall agreement within 10% between experimental and FE strains. Two stem types with different clinical results were analyzed: the Lubinus SPII and the Mueller Curved with loosening rates of 4% and 16% after 10 yr, respectively (Prognosis of total hip replacement. 63rd Annual Meeting of the American Academy of orthopaedic surgeons, Atlanta, USA). For both implant types, six stems were implanted in composite femurs. All specimens were subjected to bending. The Mueller Curved specimens were additionally subjected to torsion. Bone strains were recorded at 10 locations on the cortex and cement strains at three locations within the cement mantle. An FE model was built for both stem types and the experiments were simulated. Bone and cement strains were calculated at the experimental gauge locations. Most FE bone strains corresponded to the mean experimental strains within two standard deviations; most FE cement strains within one standard deviation. Linear regression between the FE and mean experimental strains produced slopes between 0.82 and 1.03, and R(2) values above 0.98. Particularly for the Mueller Curved, agreement improved considerably when FE strains were compared to the strains from the experimental specimen used to build the FE model. The objective of overall agreement within 10% was achieved, indicating that both FE models were successfully validated. This prerequisite for accurately predicting long-term failure has been satisfied.  相似文献   

13.
Phytoextraction: an assessment of biogeochemical and economic viability   总被引:7,自引:1,他引:6  
Phytoextraction describes the use of plants to remove metals and other contaminants from soils. This low-cost technology has potential for the in situ remediation of large areas of contaminated land. Despite more than 10 years of intensive research on the subject, very few commercial phytoextraction operations have been realised. Here, we investigate the viability of phytoextraction as an effective land-treatment technology. A Decision Support System (DSS) was developed to predict the effect of phytoextraction on soil metal concentration and distribution, as well as the economic feasibility of the process in comparison to either inaction or the best alternative technology. Changes in soil metal concentration are mechanistically predicted on the basis of plant water use, metal concentration in soil solution, soil density, plant root distribution and our so-called root-absorption factor. The root-absorption factor is a `lumped parameter' describing the xylem/soil solution metal concentration quotient. Phytoextraction is considered to be a viable option if it can satisfy environmental regulations and simultaneously be shown to be the most cost-effective technology, either alone, or in combination with other remediation technologies. To date, commercial phytoextraction has been constrained by the expectation that site remediation should be achieved in a time comparable to other clean-up technologies. However, if phytoextraction could be combined with a profit making operation such as forestry, then this time constraint, which has often been considered to be the Achilles heel of phytoextraction, may be less important.  相似文献   

14.
Bone cement infiltration can be effective at mechanically augmenting osteoporotic vertebrae. While most published literature describes the gain in mechanical strength of augmented vertebrae, we report the first measurements of viscoelastic material changes of cancellous bone due to cement infiltration. We infiltrated cancellous core specimen harvested from osteoporotic cadaveric spines with acrylic bone cement. Bone specimen before and after cement infiltration were subjected to identical quasi-static and relaxation loading in confined and free compression. Testing data were fitted to a linear viscoelastic model of compressible material and the model parameters for cement, native cancellous bone, and cancellous bone infiltrated (composite) with cement were identified. The fitting demonstrated that the linear viscoelastic model presented in this paper accurately describes the mechanical behaviour of cement and bone, before and after infiltration. Although the composite specimen did not completely adopt the properties of bulk bone cement, the stiffening of cancellous bone due to cement infiltration is considerable. The composite was, for example, 8.5 times stiffer than native bone. The local stiffening of cancellous bone in patients may alter the load transfer of the augmented motion segment and may be the cause of subsequent fractures in the vertebrae adjacent to the ones infiltrated with cement. The material model and parameters in this paper, together with an adequate finite-element model, can be helpful to investigate the load shift, the mechanism for subsequent fractures, and filling patterns for ideal cement infiltration.  相似文献   

15.
Mechanical stimuli are one of the factors that affect cell proliferation and differentiation in the process of bone tissue regeneration. Knowledge on the specific deformation sensed by cells at a microscopic level when mechanical loads are applied is still missing in the development of biomaterials for bone tissue engineering. The objective of this study was to analyze the behavior of the mechanical stimuli within some calcium phosphate-based scaffolds in terms of stress and strain distributions in the solid material phase and fluid velocity, fluid pressure and fluid shear stress distributions in the pores filled of fluid, by means of micro computed tomographed (CT)-based finite element (FE) models. Two samples of porous materials, one of calcium phosphate-based cement and another of biodegradable glass, were used. Compressive loads equivalent to 0.5% of compression applied to the solid material phase and interstitial fluid flows with inlet velocities of 1, 10 and 100 microm/s applied to the interconnected pores were simulated, changing also the inlet side and the viscosity of the medium. Similar strain distributions for both materials were found, with compressive and tensile strain maximal values of 1.6% and 0.6%, respectively. Mean values were consistent with the applied deformation. When 10 microm/s of inlet fluid velocity and 1.45 Pas viscosity, maximal values of fluid velocity were 12.76 mm/s for CaP cement and 14.87 mm/s for glass. Mean values were consistent with the inlet ones applied, and mean values of shear stress were around 5 x 10(-5)Pa. Variations on inlet fluid velocity and fluid viscosity produce proportional and independent changes in fluid velocity, fluid shear stress and fluid pressure. This study has shown how mechanical loads and fluid flow applied on the scaffolds cause different levels of mechanical stimuli within the samples according to the morphology of the materials.  相似文献   

16.

Bone cement infiltration can be effective at mechanically augmenting osteoporotic vertebrae. While most published literature describes the gain in mechanical strength of augmented vertebrae, we report the first measurements of viscoelastic material changes of cancellous bone due to cement infiltration. We infiltrated cancellous core specimen harvested from osteoporotic cadaveric spines with acrylic bone cement. Bone specimen before and after cement infiltration were subjected to identical quasi-static and relaxation loading in confined and free compression. Testing data were fitted to a linear viscoelastic model of compressible material and the model parameters for cement, native cancellous bone, and cancellous bone infiltrated (composite) with cement were identified. The fitting demonstrated that the linear viscoelastic model presented in this paper accurately describes the mechanical behaviour of cement and bone, before and after infiltration. Although the composite specimen did not completely adopt the properties of bulk bone cement, the stiffening of cancellous bone due to cement infiltration is considerable. The composite was, for example, 8.5 times stiffer than native bone. The local stiffening of cancellous bone in patients may alter the load transfer of the augmented motion segment and may be the cause of subsequent fractures in the vertebrae adjacent to the ones infiltrated with cement. The material model and parameters in this paper, together with an adequate finite-element model, can be helpful to investigate the load shift, the mechanism for subsequent fractures, and filling patterns for ideal cement infiltration.  相似文献   

17.
The present study investigated hydroxyapatite biomaterials implanted in critical-size defects in the calvaria of adult sheep to determine the optimal bioengineering of hydroxyapatite composites to facilitate bone ingrowth into these materials. Five calvarial defects measuring 16.8 mm in diameter were made in each of 10 adult sheep. Three defects were filled with cement paste composites of hydroxyapatite and beta-tricalcium phosphate as follows: (1) 100 percent hydroxyapatite-cement paste, (2) 60 percent hydroxyapatite-cement paste, and (3) 20 percent hydroxyapatite-cement paste. One defect was filled with a ceramic composite containing 60 percent hydroxyapatite-ceramic, and the fifth defect remained unfilled. One year after implantation, the volume of all biomaterials was determined by computed tomography, and porosity and bone replacement were determined using backscatter electron microscopy. Computed tomography-based volumetric assessment 1 year after implantation demonstrated that none of the unfilled cranial defects closed over the 1-year period, confirming that these were critical-size defects. There was a significant increase in volume in both the cement paste and ceramic implants containing 60 percent hydroxyapatite (p < 0.01). There was no significant change in volume of the remaining cement paste biomaterials. Analysis of specimens by backscatter electron microscopy demonstrated mean bone replacement of 4.8 +/- 1.4 percent (mean +/- SEM) in 100 percent hydroxyapatite-cement paste, 11.2 +/- 2.3 percent in 60 percent hydroxyapatite-cement paste, and 28.5 +/- 4.5 percent in 20 percent hydroxyapatite-cement paste. There was an inverse correlation between the concentration of hydroxyapatite and the amount of bone replacement in the cement paste for each composite tested (p < 0.01). Bone replacement in 60 percent hydroxyapatite-ceramic composite (13.6 +/- 2.0 percent) was not significantly different from that in 60 percent hydroxyapatite-cement paste. Of note is that the ceramic composite contained macropores (200 to 300 microm) that did not change in size over the 1-year period. All cement paste composites initially contained micropores (3 to 5 nm), which remained unchanged in 100 percent hydroxyapatite-cement paste. Cement paste implants containing increased tricalcium phosphate demonstrated a corresponding increase in macropores following resorption of the tricalcium phosphate component. Bone replacement occurred within the macropores of these implants. In conclusion, there was no significant bone ingrowth into pure hydroxyapatite-cement paste (Bone Source, Stryker-Leibinger Inc., Dallas, Texas) in the present study. The introduction of macropores in a biomaterial can optimize bone ingrowth for reconstruction of critical-size defects in calvaria. This was demonstrated in both the ceramic composite of hydroxyapatite tested and the cement paste composites of hydroxyapatite by increasing the composition of a rapidly resorbing component such as beta-tricalcium phosphate.  相似文献   

18.
Our environment is contaminated with organic and inorganic compounds released by anthropogenic activities that cause negative impacts on biological productivity and ecosystem sustainability and place human health at risk. Within the available remediation technologies, phytoremediation has emerged with high potential due to its reduced environmental impacts and economic costs. The research into phytoremediation has developed through a wide array of approaches, which also pertains to its inherent interdisciplinary characteristics, towards enhancing the potential of the technology for application in the field. Numerous patents present molecular solutions through which plants can be engineered to display improvements in key characteristics, such as the tolerance, uptake and accumulation of contaminants. The manipulation of plant growth and of the physico-chemical characteristics of the contaminated environments in order to enhance the remediation potential has also been the focus of several issued patents. This review attempts to highlight the most relevant patented advances in phytoremediation and to emphasise recent research efforts through which this green technology might be expected to develop into a commercially competitive alternative to other remediation methods.  相似文献   

19.
随着工业化进程不断加快,重金属污染日益加剧,尤其是水体的重金属污染,已严重威胁人类健康,迫切需要进行有效的污染修复.相比传统物理和化学修复,生物修复具有绿色环保和可持续性的特点.因为微生物生长繁殖迅速、生物被膜具有动态可调节和环境适应性好等特点,使其能更好耐受胁迫环境,在环境修复中有重要作用.合成生物学改造微生物及生物...  相似文献   

20.
铜污染土壤的生物修复研究进展   总被引:1,自引:0,他引:1  
随着工业化与农业化进程的加快,土壤重金属污染问题日益突出。铜(Cu)既是生命体生长发育的必需微量元素,也是重金属污染物之一。土壤中过量的Cu不仅会对植物产生毒害,而且能够通过食物链的富集作用,对人类健康造成严重威胁。生物修复技术作为治理重金属污染土壤的一种新型技术受到广泛关注。文中对生物修复的主要技术如植物修复、微生物修复、植物-微生物联合修复、动物修复等在治理Cu污染土壤方面的研究进展进行综述,以期为重金属污染土壤有效治理和可持续农业的发展提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号