首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Printed batteries are an emerging solution for integrated energy storage using low‐cost, high accuracy fabrication techniques. While several printed batteries have been previously shown, few have designed a battery that can be incorporated into an integrated device. Specifically, a fully printed battery with a small active electrode area (<1 cm2) achieving high areal capacities (>10 mAh cm?2) at high current densities (1–10 mA cm?2) has not been demonstrated, which represents the minimum form‐factor and performance requirements for many low‐power device applications. This work addresses these challenges by investigating the scaling limits of a fully printed Zn–Ag2O battery and determining the electrochemical limitations for a mm2‐scale battery. Processed entirely in air, Zn–Ag2O batteries are well suited for integration in typical semiconductor packaging flows compared to lithium‐based chemistries. Printed cells with electrodes as small as 1 mm2 maintain steady operating voltages above (>1.4 V) at high current densities (1–12 mA cm?2) and achieve the highest reported areal capacity for a fully printed battery at 11 mAh cm?2. The findings represent the first demonstration of a small, packaged, fully printed Zn–Ag2O battery with high areal capacities at high current densities, a crucial step toward realizing chip‐scale energy storage for integrated electronic systems.  相似文献   

2.
Li‐O2 batteries are promising next‐generation energy storage systems because of their exceptionally high energy density (≈3500 W h kg?1). However, to achieve stable operation, grand challenges remain to be resolved, such as preventing electrolyte decomposition and degradation of carbon, a commonly used air electrode in Li‐O2 batteries. In this work, using in situ differential electrochemical mass spectrometry, it is demonstrated that the application of a ZnO coating on the carbon electrode can effectively suppress side reactions occurring in the Li‐O2 battery. By probing the CO2 evolution during charging of 13C‐labeled air electrodes, the major sources of parasitic reactions are precisely identified, which further reveals that the ZnO coating retards the degradation of both the carbon electrode and electrolyte. The successful suppression of the degradation results in a higher oxygen efficiency, leading to enhanced stability for more than 100 cycles. Nevertheless, the degradation of the carbon electrode is not completely prevented by the coating, because the Li2O2 discharge product gradually grows at the interface between the ZnO and carbon, which eventually results in detachment of the ZnO particles from the electrode and subsequent deterioration of the performance. This finding implies that surface protection of the carbon electrode is a viable option to enhance the stability of Li‐O2 batteries; however, fundamental studies on the growth mechanism of the discharge product on the carbon surface are required along with more effective coating strategies.  相似文献   

3.
Advanced electrode materials with bendability and stretchability are critical for the rapid development of fully flexible/stretchable lithium‐ion batteries. However, the sufficiently stretchable lithium‐ion battery is still underdeveloped that is one of the biggest challenges preventing from realizing fully deformable power sources. Here, a low‐temperature hydrothermal synthesis of a cathode material for stretchable lithium‐ion battery is reported by the in situ growth of LiMn2O4 (LMO) nanocrystals inside 3D carbon nanotube (CNT) film networks. The LMO/CNT film composite has demonstrated the chemical bonding between the LMO active materials and CNT scaffolds, which is the most important characteristic of the stretchable electrodes. When coupled with a wrinkled MnOx /CNT film anode, a binder‐free, all‐manganese‐based stretchable full battery cell is assembled which delivers a high average specific capacity of ≈97 mA h g?1 and stabilizes after over 300 cycles with an enormous strain of 100%. Furthermore, combining with other merits such as low cost, natural abundance, and environmentally friendly, the all‐manganese design is expected to accelerate the practical applications of stretchable lithium‐ion batteries for fully flexible and biomedical electronics.  相似文献   

4.
Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done.  相似文献   

5.
With the widespread applications of electric vehicles, power grid stabilization, and high-pulsed power loads, high-power lithium-ion batteries (LIBs) are in urgent demand. However, the existing experimental-based design of high-power batteries is usually costly and inefficient, and provides limited information on the complex physicochemical processes inside the batteries. Digital twin concept is promising for capturing the batteries’ electrochemical performance, and optimizing the power capability of LIBs. Here, an electrochemical-thermal coupled model is developed as a digital twin model for rational design of ultrahigh-power LiFePO4/graphite LIBs. The model can accurately predict the batteries’ performance and help to predetermine the optimal parameters to achieve an ultrahigh power capability. After model-guided optimization, the battery shows a high energy density of 92.38 Wh kg−1 at an ultrafast discharging current of 50 C and can withstand 150 C pulse discharging tests. Notably, the digital twin model can reveal experimentally inaccessible time- and space-resolved information and identify the rate-determining steps inside the battery. Hence, model-driven optimization of ultrahigh-power LiFePO4/graphite batteries is successfully realized aiming at the critical factors in the rate-determining steps. The work provides an instructive design of ultrahigh-power LiFePO4/graphite batteries, which might guide the future direction to boost the power capability of LIBs.  相似文献   

6.
Aqueous batteries are facing big challenges in the context of low working voltages and energy density, which are dictated by the narrow electrochemical window of aqueous electrolytes and low specific capacities of traditional intercalation‐type electrodes, even though they usually represent high safety, low cost, and simple maintenance. For the first time, this work demonstrates a record high‐energy‐density (1503 Wh kg?1 calculated from the cathode active material) aqueous battery system that derives from a novel electrolyte design to expand the electrochemical window of electrolyte to 3 V and two high‐specific‐capacity electrode reactions. An acid‐alkaline dual electrolyte separated by an ion‐selective membrane enables two dissolution/deposition electrode redox reactions of MnO2/Mn2+ and Zn/Zn(OH)42? with theoretical specific capacities of 616 and 820 mAh g?1, respectively. The newly proposed Zn–Mn2+ aqueous battery shows a high Coulombic efficiency of 98.4% and cycling stability of 97.5% of discharge capacity retention for 1500 cycles. Furthermore, in the flow battery based on Zn–Mn2+ pairs, more excellent stability of 99.5% of discharge capacity retention for 6000 cycles is achieved due to greatly improved reversibility of the Zn anode. This work provides a new path for the development of novel aqueous batteries with high voltage and energy density.  相似文献   

7.
Rechargeable lithium ion batteries have wide applications in electronics, where customers always demand more capacity and longer lifetime. Lithium ion batteries have also been considered to be used in electric and hybrid vehicles1 or even electrical grid stabilization systems2. All these applications simulate a dramatic increase in the research and development of battery materials3-7, including new materials3,8, doping9, nanostructuring10-13, coatings or surface modifications14-17 and novel binders18. Consequently, an increasing number of physicists, chemists and materials scientists have recently ventured into this area. Coin cells are widely used in research laboratories to test new battery materials; even for the research and development that target large-scale and high-power applications, small coin cells are often used to test the capacities and rate capabilities of new materials in the initial stage. In 2010, we started a National Science Foundation (NSF) sponsored research project to investigate the surface adsorption and disordering in battery materials (grant no. DMR-1006515). In the initial stage of this project, we have struggled to learn the techniques of assembling and testing coin cells, which cannot be achieved without numerous help of other researchers in other universities (through frequent calls, email exchanges and two site visits). Thus, we feel that it is beneficial to document, by both text and video, a protocol of assembling and testing a coin cell, which will help other new researchers in this field. This effort represents the "Broader Impact" activities of our NSF project, and it will also help to educate and inspire students.In this video article, we document a protocol to assemble a CR2032 coin cell with a LiCoO2 working electrode, a Li counter electrode, and (the mostly commonly used) polyvinylidene fluoride (PVDF) binder. To ensure new learners to readily repeat the protocol, we keep the protocol as specific and explicit as we can. However, it is important to note that in specific research and development work, many parameters adopted here can be varied. First, one can make coin cells of different sizes and test the working electrode against a counter electrode other than Li. Second, the amounts of C black and binder added into the working electrodes are often varied to suit the particular purpose of research; for example, large amounts of C black or even inert powder were added to the working electrode to test the "intrinsic" performance of cathode materials14. Third, better binders (other than PVDF) have also developed and used18. Finally, other types of electrolytes (instead of LiPF6) can also be used; in fact, certain high-voltage electrode materials will require the uses of special electrolytes7.  相似文献   

8.
Owing to the ever‐increasing safety concerns about conventional lithium‐ion batteries, whose applications have expanded to include electric vehicles and grid‐scale energy storage, batteries with solidified electrolytes that utilize nonflammable inorganic materials are attracting considerable attention. In particular, owing to their superionic conductivities (as high as ≈10?2 S cm?1) and deformability, sulfide materials as the solid electrolytes (SEs) are considered the enabling material for high‐energy bulk‐type all‐solid‐state batteries. Herein the authors provide a brief review on recent progress in sulfide Li‐ and Na‐ion SEs for all‐solid‐state batteries. After the basic principles in designing SEs are considered, the experimental exploration of multicomponent systems and ab initio calculations that accelerate the search for stronger candidates are discussed. Next, other issues and challenges that are critical for practical applications, such as instability in air, electrochemical stability, and compatibility with active materials, are discussed. Then, an emerging progress in liquid‐phase synthesis and solution process of SEs and its relevant prospects in ensuring intimate ionic contacts and fabricating sheet‐type electrodes is highlighted. Finally, an outlook on the future research directions for all‐solid‐state batteries employing sulfide superionic conductors is provided.  相似文献   

9.
Mechanically bendable and flexible functionalities are urgently required for next‐generation battery systems that will be included in soft and wearable electronics, active sportswear, and origami‐based deployable space structures. However, it is very difficult to synthesize anode and cathode electrodes that have high energy density and structural reliability under large bending deformation. Here, vanadium oxide (V2O5) and nickel cobalt oxide (NiCo2O4) nanowire‐carbon fabric electrodes for highly flexible and bendable lithium ion batteries are reported. The vanadium oxide and nickel cobalt oxide nanowires were directly grown on plasma‐treated carbon fabric and were used as cathode and anode electrodes in a full cell lithium ion battery. Most importantly, a pre‐lithiation process was added to the nickel cobalt oxide nanowire anode to facilitate the construction of a full cell using symmetrically‐architectured nanowire‐carbon fabric electrodes. The highly bendable full cell based on poly(ethylene oxide) polymer electrolyte and room temperature ionic liquid shows high energy density of 364.2 Wh kg?1 at power density of 240 W kg?1, without significant performance degradation even under large bending deformations. These results show that vanadium oxide and lithiated nickel cobalt oxide nanowire‐carbon fabrics are a good combination for binder‐free electrodes in highly flexible lithium‐ion batteries.  相似文献   

10.
Lithium–sulfur (Li–S) batteries are promising candidates for energy storage, but suffer from capacity and cycling challenges caused by the serious shuttling effect of polysulfide (PS) ions. To address these issues, a sodium alginate (SA)‐derived affinity laminated chromatography membrane built‐in electrode is designed. This is the first attempt to utilize this type of membrane, which is widely used for the selective adsorption of proteins, in the battery field. An ordered multilayer structure throughout the electrode can easily be obtained, and the number of membrane layers can be also conveniently controlled by varying the cross‐linking time of SA. The PS shuttling effect is efficiently suppressed and the permeability of PSs is reduced by enveloping the carbon/sulfur powder in ultrathin laminated chromatography membranes. As a result, these designed electrodes deliver a superhigh initial capacity of 1492 mA h g?1, with a capacity retention almost 20% higher than the contrast. This low‐cost and easily mass‐producible strategy inspired by affinity chromatography is expected to effectively solve the PS shuttling problem toward high‐loading and long‐lifetime Li–S batteries in practice.  相似文献   

11.
Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.  相似文献   

12.
The symmetric batteries with an electrode material possessing dual cathodic and anodic properties are regarded as an ideal battery configuration because of their distinctive advantages over the asymmetric batteries in terms of fabrication process, cost, and safety concerns. However, the development of high‐performance symmetric batteries is highly challenging due to the limited availability of suitable symmetric electrode materials with such properties of highly reversible capacity. Herein, a triple‐hollow‐shell structured V2O5 (THS‐V2O5) symmetric electrode material with a reversible capacity of >400 mAh g?1 between 1.5 and 4.0 V and >600 mAh g?1 between 0.1 and 3.0 V, respectively, when used as the cathode and anode, is reported. The THS‐V2O5 electrodes assembled symmetric full lithium‐ion battery (LIB) exhibits a reversible capacity of ≈290 mAh g?1 between 2 and 4.0 V, the best performed symmetric energy storage systems reported to date. The unique triple‐shell structured electrode makes the symmetric LIB possessing very high initial coulombic efficiency (94.2%), outstanding cycling stability (with 94% capacity retained after 1000 cycles), and excellent rate performance (over 140 mAh g?1 at 1000 mA g?1). The demonstrated approach in this work leaps forward the symmetric LIB performance and paves a way to develop high‐performance symmetric battery electrode materials.  相似文献   

13.
Benefiting from higher volumetric capacity, environmental friendliness and metallic dendrite‐free magnesium (Mg) anodes, rechargeable magnesium batteries (RMBs) are of great importance to the development of energy storage technology beyond lithium‐ion batteries (LIBs). However, their practical applications are still limited by the absence of suitable electrode materials, the sluggish kinetics of Mg2+ insertion/extraction and incompatibilities between electrodes and electrolytes. Herein, a systematic and insightful review of recent advances in RMBs, including intercalation‐based cathode materials and conversion reaction‐based compounds is presented. The relationship between microstructures with their electrochemical performances is comprehensively elucidated. In particular, anode materials are discussed beyond metallic Mg for RMBs. Furthermore, other Mg‐based battery systems are also summarized, including Mg–air batteries, Mg–sulfur batteries, and Mg–iodine batteries. This review provides a comprehensive understanding of Mg‐based energy storage technology and could offer new strategies for designing high‐performance rechargeable magnesium batteries.  相似文献   

14.
Calcium represents a promising anode for the development of high‐energy‐density, low‐cost batteries. However, a lack of suitable electrolytes has restricted the development of rechargeable batteries with a Ca anode. Furthermore, to achieve a high energy density system, sulfur would be an ideal cathode to couple with the Ca anode. Unfortunately, a reversible calcium‐sulfur (Ca‐S) battery has not yet been reported. Herein, a basic study of a reversible nonaqueous room‐temperature Ca‐S battery is presented. The reversibility of the Ca‐S chemistry and high utilization of the sulfur cathode are enabled by employing a Li+‐ion‐mediated calcium‐based electrolyte. Mechanistic insights pursued by spectroscopic, electrochemical, microscopic, and theoretical simulation (density functional theory) investigations imply that the Li+‐ions in the Ca‐electrolyte stimulate the reactivation of polysulfide/sulfide species. The coordination of lithium to sulfur reduces the formation of sturdy Ca‐S ionic bonds, thus boosting the reversibility of the Ca‐S chemistry. In addition, the presence of Li+‐ions facilitates the ionic charge transfer both in the electrolyte and across the solid electrolyte interphase layer, consequently reducing the interfacial and bulk impedance of Ca‐S batteries. As a result, both the utilization of active sulfur in the cathode and the discharge voltage of Ca‐S batteries are significantly improved.  相似文献   

15.
Fast developments and substantial achievements have been shaping the field of wearable electronic devices, resulting in the persistent requirement for stretchable lithium‐ion batteries (LIBs). Despite recent progress in stretchable electrodes, stretching full batteries, including electrodes, separator, and sealing material, remains a great challenge. Here, a simple design concept for stretchable LIBs via a wavy structure at the full battery device scale is reported. All components including the package are capable of being reversibly stretched by folding the entire pouch cell into a wavy shape with polydimethylsiloxane filled in each valley region. In addition, the stretchable, sticky, and porous polyurethane/poly(vinylidene fluoride) membrane is adopted as a separator for the first time, which can maintain intimate contact between electrodes and separator to continuously secure ion pathway under dynamic state. Commercial cathode, anode, and package can be utilized in this rationally designed wavy battery to enable stretchability. The results indicate good electrochemical performances and long‐term stability at repeatable release–stretch cycles. A high areal capacity of 3.6 mA h cm?2 and energy density of up to 172 W h L?1 can be achieved for the wavy battery. The promising results of the cost‐effective wavy battery with high stretchability shed light on the development of stretchable energy storages.  相似文献   

16.
High‐performance flexible energy‐storage devices have great potential as power sources for wearable electronics. One major limitation to the realization of these applications is the lack of flexible electrodes with excellent mechanical and electrochemical properties. Currently employed batteries and supercapacitors are mainly based on electrodes that are not flexible enough for these purposes. Here, a three‐dimensionally interconnected hybrid hydrogel system based on carbon nanotube (CNT)‐conductive polymer network architecture is reported for high‐performance flexible lithium ion battery electrodes. Unlike previously reported conducting polymers (e.g., polyaniline, polypyrrole, polythiophene), which are mechanically fragile and incompatible with aqueous solution processing, this interpenetrating network of the CNT‐conducting polymer hydrogel exibits good mechanical properties, high conductivity, and facile ion transport, leading to facile electrode kinetics and high strain tolerance during electrode volume change. A high‐rate capability for TiO2 and high cycling stability for SiNP electrodes are reported. Typically, the flexible TiO2 electrodes achieved a capacity of 76 mAh g–1 in 40 s of charge/discharge and a high areal capacity of 2.2 mAh cm–2 can be obtained for flexible SiNP‐based electrodes at 0.1C rate. This simple yet efficient solution process is promising for the fabrication of a variety of high performance flexible electrodes.  相似文献   

17.
Although the rechargeable lithium–oxygen (Li–O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon‐based air‐electrode, Li metal anode, and electrodes, toward reduced oxygen species. Here a simple one‐step in situ electrochemical precharging strategy is demonstrated to generate thin protective films on both carbon nanotubes (CNTs), air‐electrodes and Li metal anodes simultaneously under an inert atmosphere. Li–O2 cells after such pretreatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity‐limited protocol of 1000 mA h g?1 and 500 mA h g?1, respectively, which is far more than those without pretreatment. The thin‐films formed from decomposition of electrolyte during in situ electrochemical precharging processes in an inert environment, can protect both CNTs air‐electrode and Li metal anode prior to conventional Li–O2 discharge/charge cycling, where reactive reduced oxygen species are formed. This work provides a new approach for protection of carbon‐based air‐electrodes and Li metal anodes in practical Li–O2 batteries, and may also be applied to other battery systems.  相似文献   

18.
Early demonstrations of wearable devices have driven interest in flexible lithium‐ion batteries. Previous demonstrations of flexible lithium‐ion batteries trade off between low areal capacity, poor mechanical flexibility and/or high thickness of inactive components. Here, a reinforced electrode design is used to support the active layers of the battery and a freestanding carbon nanotube (CNT) layer is used as the current collector. The supported architecture helps to increase the areal capacity (mAh cm‐2) of the battery and improve the tensile strength and mechanical flexibility of the electrodes. Batteries based on lithium cobalt oxide and lithium titanate oxide shows excellent electrochemical and mechanical performance. The battery has an areal capacity of ≈1 mAh cm‐2 and a capacity retention of around 94% after cycling the battery for 450 cycles at a C/2 rate. The reinforced electrode has a tensile strength of ≈5.5–7.0 MPa and shows excellent capacity retention after repeatedly flexing to a bending radius ranging from 45 to 10 mm. The relationships between mechanical flexing, electrochemical performance, and mechanical integrity of the battery are studied using electrochemical cycling, electron microscopy, and electrochemical impedance spectroscopy (EIS).  相似文献   

19.
The migration of zinc‐ion batteries from alkaline electrolyte to neutral or mild acidic electrolyte promotes research into their flexible applications. However, discharge voltage of many reported zinc‐ion batteries is far from satisfactory. On one hand, the battery voltage is substantially restricted by the narrow voltage window of aqueous electrolytes. On the other hand, many batteries yield a low‐voltage discharge plateau or show no plateau but capacitor‐like sloping discharge profiles. This impacts the battery's practicability for flexible electronics where stable and consistent high energy is needed. Herein, an aqueous zinc hybrid battery based on a highly concentrated dual‐ion electrolyte and a hierarchically structured lithium‐ion‐intercalative LiVPO4F cathode is developed. This hybrid battery delivers a flat and high‐voltage discharge plateau of nearly 1.9 V, ranking among the highest reported values for all aqueous zinc‐based batteries. The resultant high energy density of 235.6 Wh kg?1 at a power density of 320.8 W kg?1 also outperforms most reported zinc‐based batteries. A designed solid‐state and long‐lasting hydrogel electrolyte is subsequently applied in the fabrication of a flexible battery, which can be integrated into various flexible devices as powerful energy supply. The idea of designing such a hybrid battery offers a new strategy for developing high‐voltage and high‐energy aqueous energy storage systems.  相似文献   

20.
Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) are considered the next-generation candidates for future energy storage systems to partially substitute commercial lithium-ion batteries because of their abundant sodium/potassium reserves, cost-effectiveness, and high safety. Polyanionic cathode materials are widely used in alkali ion batteries due to their stable structural framework, high thermal stability, excellent alkali ion diffusion kinetics, and adjustable working voltage. Generally, the polyanionic cathodes used for SIBs surpass PIBs in the aspect of energy density and cycle life in most cases, however, the PIBs also have their unique advantages that are seldom reported. To this end, the polyanionic materials are classified by the valence states of active metal sites, the storage mechanism of Na+ and K+ in different crystal structures is summarized, and the electrochemical performance between SIBs and PIBs is compared. Particularly, some unique advantages of polyanionic cathodes in PIBs, such as high working voltage, superior rate capability, and excellent capacity retention are revealed, and the possible reasons are discussed in detail. Finally, various viable solutions are proposed to improve the battery performance of polyanionic compounds for future development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号