首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ralstonia eutropha is a hydrogen-oxidizing (“Knallgas”) bacterium that can easily switch between heterotrophic and autotrophic metabolism to thrive in aerobic and anaerobic environments. Its versatile metabolism makes R. eutropha an attractive host for biotechnological applications, including H2-driven production of biodegradable polymers and hydrocarbons. H2 oxidation by R. eutropha takes place in the presence of O2 and is mediated by four hydrogenases, which represent ideal model systems for both biohydrogen production and H2 utilization. The so-called soluble hydrogenase (SH) couples reversibly H2 oxidation with the reduction of NAD+ to NADH and has already been applied successfully in vitro and in vivo for cofactor regeneration. Thus, the interaction of the SH with the cellular NADH/NAD+ pool is of major interest. In this work, we applied the fluorescent biosensor Peredox to measure the [NADH]:[NAD+] ratio in R. eutropha cells under different metabolic conditions. The results suggest that the sensor operates close to saturation level, indicating a rather high [NADH]:[NAD+] ratio in aerobically grown R. eutropha cells. Furthermore, we demonstrate that multicomponent analysis of spectrally-resolved fluorescence lifetime data of the Peredox sensor response to different [NADH]:[NAD+] ratios represents a novel and sensitive tool to determine the redox state of cells.  相似文献   

2.
Photosynthesis Research - The fluorescent biosensor Frex, recently introduced as a sensitive tool to quantify the NADH concentration in living cells, was characterized by time-integrated and...  相似文献   

3.
Recently, candidates for umami receptors have been identified in taste cells, but the precise transduction mechanisms of the downstream receptor remain unknown. To investigate how intracellular Ca(2+) increases in the umami transduction pathway, we measured changes in intracellular Ca(2+) levels in response to umami stimuli monosodium glutamate (MSG), IMP, and MSG + IMP in mouse taste receptor cells (TRCs) by Ca(2+) imaging. Even when extracellular Ca(2+) was absent, 1/3 of umami-responsive TRCs exhibited increased intracellular Ca(2+) levels. When intracellular Ca(2+) was depleted, half of the TRCs retained their response to umami. These results suggest that umami-responsive TRCs increase their intracellular Ca(2+) levels through two pathways: by releasing Ca(2+) from intracellular stores and by an influx of Ca(2+) from extracellular sources. We conclude that the Ca(2+) influx from extracellular source might play an important role in the synergistic effect between MSG and IMP.  相似文献   

4.
The soluble NAD+-reducing Ni-Fe hydrogenase (SH) from Ralstonia eutropha H16 is remarkable because it cleaves hydrogen in the presence of dioxygen at a unique Ni-Fe active site (Burgdorf et al. (2005) J. Am. Chem. Soc. 127, 576). By X-ray absorption (XAS), FTIR, and EPR spectroscopy, we monitored the structure and oxidation state of its metal centers during H2 turnover. In NADH-activated protein, a change occurred from the (CN)O2Ni(II)(mu-S)2Fe(II)(CN)3(CO) site dominant in the wild-type SH to a standard-like S2Ni(II)(mu-S)2Fe(II)(CN)2(CO) site as the prevailing species in a specific mutant protein, HoxH-H16L. The wild-type SH primarily was active in H2 cleavage. The nonstandard reaction mechanism does not involve stable EPR-detectable trivalent Ni oxidation states, namely, the Ni-A,B,C states as observed in standard hydrogenases. In the HoxH-mutant protein H16L, H2 oxidation was impaired, but H2 production occurred via a stable Ni-C state (Ni(III)-H(-)-Fe(II)), suggesting a reaction sequence similar to that of standard hydrogenases. It is proposed that reductive activation by NADH of both wild-type and H16L proteins causes the release of an oxygen species from Ni and is initiated by electron transfer from a [2Fe-2S] cluster in the HoxU subunit that at first becomes reduced by electrons from NADH. Electrons derived from H2 cleavage, on the other hand, are transferred to NAD+ via a different pathway involving a [4Fe-4S] cluster in HoxY, which is reducible only in wild-type SH but not in the H16L variant.  相似文献   

5.
Brekasis D  Paget MS 《The EMBO journal》2003,22(18):4856-4865
We describe the identification of Rex, a novel redox-sensing repressor that appears to be widespread among Gram-positive bacteria. In Streptomyces coelicolor Rex binds to operator (ROP) sites located upstream of several respiratory genes, including the cydABCD and rex-hemACD operons. The DNA-binding activity of Rex appears to be controlled by the redox poise of the NADH/NAD+ pool. Using electromobility shift and surface plasmon resonance assays we show that NADH, but not NAD+, inhibits the DNA-binding activity of Rex. However, NAD+ competes with NADH for Rex binding, allowing Rex to sense redox poise over a range of NAD(H) concentrations. Rex is predicted to include a pyridine nucleotide-binding domain (Rossmann fold), and residues that might play key structural and nucleotide binding roles are highly conserved. In support of this, the central glycine in the signature motif (GlyXGlyXXGly) is shown to be essential for redox sensing. Rex homologues exist in most Gram-positive bacteria, including human pathogens such as Staphylococcus aureus, Listeria monocytogenes and Streptococcus pneumoniae.  相似文献   

6.
7.
Summary The blue fluorescence emitted by microbial cells irradiated with UV light at 360 nm is usually supposed to provide a good estimate of the cell NAD(P)H content. Here we present an example of a microbial fermentation in which culture fluorescence, both in the cells and in the medium, was almost exclusively due to the presence of a fluorophore that displayed an emission spectrum very similar to that of NAD(P)H but that we show by biochemical studies to be a different compound. Our results demonstrate that studies on the redox state of cells should be based on on-line fluorescence data only after appropriate control experiments to establish a definitive correlation between fluorescence and NAD(P)H levels. Offprint requests to: J. E. Bailey  相似文献   

8.
9.
Exposure of Ehrlich ascites tumor cells to 3-aminobenzamide for 60 min resulted in a dose-dependent increase of cellular NAD and ATP levels at a concentration range of 0.3-5 mM. In the cells exposed to 5-methylnicotinamide there was a decrease of both nucleotide levels. As a possible cause for these changes we found a marked inhibition of microsomal NAD glycohydrolase activity by 3-aminobenzamide and a moderate stimulation of this enzyme by 5-methylnicotinamide. Furthermore, 3-aminobenzamide significantly enhanced the cellular uptake of nicotinamide and NAD synthesis, probably by the stimulation of nuclear ATP-NMN adenylyltransferase activity. We show also that the cells containing elevated NAD and ATP levels by the exposure to 3-aminobenzamide became resistant to the 5-azacytidine cytotoxicity.  相似文献   

10.
Escherichia coli (E. coli) maintains its total NADH/NAD+ intracellular pool by synthesizing NAD through the de novo pathway and the pyridine nucleotide salvage pathway. The salvage pathway recycles intracellular NAD breakdown products and preformed pyridine compounds from the environment, such as nicotinic acid (NA). The enzyme nicotinic acid phosphoribosyltransferase (NAPRTase; EC 2.4.2.11), encoded by the pncB gene, catalyzes the formation of nicotinate mononucleotide (NAMN), a direct precursor of NAD, from NA. This reaction is believed to be the rate-limiting step in the NAD salvage pathway. The current study investigates the effect of overexpressing the pncB gene from Salmonella typhimurium on the total levels of NAD, the NADH/NAD+ ratio, and the production of different metabolites in E. coli under anaerobic chemostat conditions and anaerobic tube experiments. In addition, this paper studies the effect of combining the overexpression of the pncB gene with an NADH regeneration strategy that increases intracellular NADH availability, as we have previously shown. (The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures, Metabolic Eng. 4, 230-237; Metabolic engineering of Escherichia coli: Increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase, Metabolic Eng. 4, 217-229.) Overexpression of the pncB gene in chemostat experiments increased the total NAD levels, decreased the NADH/NAD+ ratio, and did not significantly redistribute the metabolic fluxes. However, under anaerobic tube conditions, overexpression of the pncB gene led to a significant shift in the metabolic patterns as evidenced by a decrease in lactate production and an increase as high as two-fold in the ethanol-to-acetate (Et/Ac) ratio. These results suggest that under chemostat conditions the total level of NAD is not limiting and the metabolic rates are fixed by the system at steady state. On the other hand, under transient conditions (such as those in batch cultivation) the increase in the total level of NAD can increase the rate of NADH-dependent pathways (ethanol) and therefore change the final distribution of metabolites. The effect of combining overexpression of the pncB gene with the substitution of the native cofactor-independent formate dehydrogenase (FDH) with an NAD(+)-dependent FDH was also investigated under anaerobic tube conditions. This manipulation produced a metabolic pattern that combines a high Et/Ac ratio similar to that obtained with the new FDH with an intermediate lactate level similar to that obtained with the overexpression of the pncB gene. It was found that addition of the pncB gene to the FDH system does not increase further the production of reduced metabolites because the system for NADH regeneration already reached the maximum theoretical yield of approximately 4 mol NADH/mol of glucose.  相似文献   

11.
Glycolytic flux may increase over 100 times in skeletal muscle during rest-to-work transition, whereas glycolytic metabolite concentrations remain relatively constant. This constancy cannot be explained by an identical direct activation of all glycolytic enzymes because the concentrations of ATP, ADP, AMP, P(i), NADH and NAD+, modulators of the activity of different glycolytic enzymes, change. It is demonstrated in the present in silico study that a perfect homeostasis of glycolytic metabolite concentrations can be achieved if glycolysis is divided into appropriate blocks of enzymes that are directly activated to a different extent in order to compensate the effect of the modulators.  相似文献   

12.
1. Toluene-permeabilized rat heart mitochondria have been used to study the regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+, adenine and nicotinamide nucleotides, and to compare the properties of the enzymes in situ, with those in mitochondrial extracts. 2. Although K0.5 values (concn. giving half-maximal effect) for Ca2+ of 2-oxoglutarate dehydrogenase were around 1 microM under all conditions, corresponding values for NAD+-linked isocitrate dehydrogenase were in the range 5-43 microM. 3. For both enzymes, K0.5 values for Ca2+ observed in the presence of ATP were 3-10-fold higher than those in the presence of ADP, with values increasing over the ADP/ATP range 0.0-1.0. 4. 2-Oxoglutarate dehydrogenase was less sensitive to inhibition by NADH when assayed in permeabilized mitochondria than in mitochondrial extracts. Similarly, the Km of NAD+-linked isocitrate dehydrogenase for threo-Ds-isocitrate was lower in permeabilized mitochondria than in extracts under all the conditions investigated. 5. It is concluded that in the intact heart Ca2+ activation of NAD+-linked isocitrate dehydrogenase may not necessarily occur in parallel with that of the other mitochondrial Ca2+-sensitive enzymes, 2-oxoglutarate dehydrogenase and the pyruvate dehydrogenase system.  相似文献   

13.
14.
The effects of variations of the NAD+/NADH quotient on the uptake of 86Rb by human red cells loaded by non-disruptive means with the chelator Benz2 and different amounts of 45Ca has been examined. The NAD+/NADH quotient was modified by the addition of pyruvate and/or lactate or xylitol. It was found that the uptake of 86Rb at a given intracellular Ca2+ concentration was faster in the reduced state (lactate or xylitol added). Metabolic changes were associated with variations of the redox state. However, glycolitic intermediates did not significantly modify the apparent affinity for Ca2+ of the Ca2+-dependent K+ channel in one-step inside-out vesicles prepared from the erythrocyte membrane. Taken together, these results suggest that modifications of the cytoplasmic redox potential could modulate the sensitivity to Ca2+ of the Ca2+-dependent K+ channel in the human red cells under physiological conditions. This conclusion is consistent with previous findings in inside-out vesicles of human erythrocytes using artificial electron donors.  相似文献   

15.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in HA22/VGH human hepatoma cells were evaluated using fura-2 as a fluorescent Ca2+ dye. Histamine (0.2-5 microM) increased [Ca2+]i in a concentration-dependent manner with an EC50 value of about 1 microM. The [Ca2+]i response comprised an initial rise, a slow decay, and a sustained phase. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In Ca2+-free medium, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 5 microM histamine failed to increase [Ca2+]i. After pretreatment with 5 microM histamine in Ca2+-free medium for 4 min, addition of 3 mM Ca2+ induced a [Ca2+]i increase of a magnitude 7-fold greater than control. Histamine (5 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 5 microM pyrilamine but was not altered by 50 microM cimetidine. Together, this study shows that histamine induced [Ca2+]i increases in human hepatoma cells by stimulating H1, but not H2, histamine receptors. The [Ca2+]i signal was caused by Ca2+ release from thapsigargin-sensitive endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, accompanied by Ca2+ entry.  相似文献   

16.
17.
Recently, glycine has been shown to prevent liver injury after endotoxin treatment in vivo. We demonstrated that ethanol and endotoxin stimulated Kupffer cells to release PGE(2), which elevated oxygen consumption in parenchymal cells. Because glycine has been reported to protect renal tubular cells, isolated hepatocytes, and perfused livers against hypoxic injury, the purpose of this study was to determine whether glycine prevents increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in hepatic parenchymal cells by agonists released during stress, such as with PGE(2) and adrenergic hormones. Liver parenchymal cells isolated from female Sprague-Dawley rats were cultured for 4 h in DMEM/F12 medium, and [Ca(2+)](i) in individual cells was assessed fluorometrically using the fluorescent calcium indicator fura 2. PGE(2) caused a dose-dependent increase in [Ca(2+)](i) from basal values of 130 +/- 10 to maximal levels of 434 +/- 55 nM. EGTA partially prevented this increase, indicating that either extracellular calcium or agonist binding is Ca(2+) dependent. 8-(Diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), an agent that prevents the release of Ca(2+) from intracellular stores, also partially blocked the increase in [Ca(2+)](i) caused by PGE(2), suggesting that intracellular Ca(2+) pools are involved. Together, these results are consistent with the hypothesis that both the intracellular and extracellular Ca(2+) pools are involved in the increase in [Ca(2+)](i) caused by PGE(2). Interestingly, glycine, which activates anion (i.e., chloride) channels, blocked the increase in [Ca(2+)](i) due to PGE(2) in a dose-dependent manner. Low-dose strychnine, an antagonist of glycine-gated chloride channel in the central nervous system, partially reversed the inhibition by glycine. When extracellular Cl(-) was omitted, glycine was much less effective in preventing the increase in [Ca(2+)](i) due to PGE(2). Phenylephrine, an alpha(1)-type adrenergic receptor agonist, also increased [Ca(2+)](i), as expected, from 159 +/- 20 to 432 +/- 43 nM. Glycine also blocked the increase in [Ca(2+)](i) due to phenylephrine, and the effect was also reversed by low-dose strychnine. Together, these data indicate that glycine rapidly blocks the increase in [Ca(2+)](i) in hepatic parenchymal cells due to agonists released during stress, most likely by actions on a glycine-sensitive anion channel and that this may be a major aspect of glycine-induced hepatoprotection.  相似文献   

18.
Relation between NADH and FAD concentrations and the quantity of calcium released from intracellular stores in fertilized and unfertilized bovine oocytes was investigated using luminescent analysis. Inhibition of Ca2+ exit from intracellular stores was detected in degenerative oocytes at metaphase II and 2-cell embryos. The intensity of both NADH and FAD fluorescence increased in 2-cell degenerated embryos, whereas the increase in only NADH fluorescence intensity occurred in degenerated oocytes at metaphase II stage. Degeneration exerted no influence on NADH fluorescence intensity or Ca2+ exit from intracellular stores, whereas a decreased FAD fluorescence intensity was noted in degenerated pronuclei. The obtained data testify that in degenerated zygotes and early embryos Ca2+ release may occur from different intracellular stores.  相似文献   

19.
K562 erythroleukemic cells cultured at low population density in the absence of serum die within 12-24 hours, unless 0.1 mM glyoxylic acid is added to the culture medium. Earlier events, preceding cell death and occurring within 2 hours culture, are: a) a marked drop of both the NAD+/NADH ratio and the NAD+ concentration, which is prevented by 10mM benzamide, b) an increased biosynthesis of NAD+, leading to extensive depletion of cellular ATP. In the presence of 0.1 mM glyoxylic acid the NAD+/NADH ratio as well as their absolute concentrations remain unchanged, while NAD+ biosynthesis is absent. A NAD+/NADH glycohydrolase activity is present in the cell extract, inhibited by 10 mM benzamide and with a higher affinity for NADH than for NAD+. Preservation of a high NAD+/NADH ratio by glyoxylic acid apparently prevents enzyme activity and the related loss of pyridine nucleotides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号