首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MY Xu  Y Dong  QX Zhang  L Zhang  YZ Luo  J Sun  YL Fan  L Wang 《BMC genomics》2012,13(1):421
ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are endogenous regulators of a broad range of physiological processes and act by either degrading mRNA or blocking its translation. Oilseed rape (Brassica napus) is one of the most important crops in China, Europe and other Asian countries with publicly available expressed sequence tags (ESTs) and genomic survey sequence (GSS) databases, but little is known about its miRNAs and their targets. To date, only 46 miRNAs have been identified in B. napus. RESULTS: Forty-one conserved and 62 brassica-specific candidate B. napus miRNAs, including 20 miRNA* sequences, were identified using Solexa sequencing technology. Furthermore, 33 non-redundant mRNA targets of conserved brassica miRNAs and 19 new non-redundant mRNA targets of novel brassica-specific miRNAs were identified by genome-scale sequencing of mRNA degradome. CONCLUSIONS: This study describes large scale cloning and characterization of B. napus miRNAs and their potential targets, providing the foundation for further characterization of miRNA function in the regulation of diverse physiological processes in B. napus.  相似文献   

3.
Drought is a major abiotic stress affecting crop productivity and quality. As a class of noncoding RNA, microRNA (miRNA) plays important roles in plant growth, development, and stress response. However, their response and roles in tomato drought stress is largely unknown. Here, by using high-throughput sequencing, we compared the miRNA profiles before and after drought treatment in two tomato genotypes: M82, a drought-sensitive cultivated tomato (Solanum lycopersicum), and IL2-5, a drought-tolerant introgression line derived from M82 and the tomato wild species S. pennellii (LA0716). A total of 108 conserved and 208 novel miRNAs were identified, among them, 32 and 68 were significantly changed in expression after stress. Further, 1936 putative target genes were predicted for those differentially-expressed miRNAs. Gene ontology and pathway analysis showed that many of the target genes were involved in stress resistance, such as genes in GO terms including response to stress, defense response, response to stimulus, phosphorylation, and signal transduction. Our results suggested that miRNAs play an essential role in the drought response of tomato. This work will help to further characterize specific miRNAs functioning in drought tolerance.  相似文献   

4.
5.
6.
7.
Yin Z  Li C  Han X  Shen F 《Gene》2008,414(1-2):60-66
MicroRNAs (miRNAs) are a class of non-coding RNAs that have important gene regulation roles in various organisms. To date, a total of 1279 plant miRNAs have been deposited in the miRNA miRBase database (Release 10.1). Many of them are conserved during the evolution of land plants suggesting that the well-conserved miRNAs may also retain homologous target interactions. Recently, little is known about the experimental or computational identification of conserved miRNAs and their target genes in tomato. Here, using a computational homology search approach, 21 conserved miRNAs were detected in the Expressed Sequence Tags (EST) and Genomic Survey Sequence (GSS) databases. Following this, 57 potential target genes were predicted by searching the mRNA database. Most of the target mRNAs appeared to be involved in plant growth and development. Our findings verified that the well-conserved tomato miRNAs have retained homologous target interactions amongst divergent plant species. Some miRNAs express diverse combinations in different cell types and have been shown to regulate cell-specific target genes coordinately. We believe that the targeting propensity for genes in different biological processes can be explained largely by their protein connectivity.  相似文献   

8.
9.
10.
Plant genomes encode diverse small RNA classes that function in distinct gene‐silencing pathways. To elucidate the intricate regulation of microRNAs (miRNAs) and endogenous small‐interfering RNAs (siRNAs) in response to chilling injury in tomato fruit, the deep sequencing and bioinformatic methods were combined to decipher the small RNAs landscape in the control and chilling‐injured groups. Except for the known miRNAs and ta‐siRNAs, 85 novel miRNAs and 5 ta‐siRNAs members belonging to 3 TAS families (TAS5, TAS9 and TAS10) were identified, 34 putative phased small RNAs and 740 cis/trans‐natural antisense small‐interfering RNAs (nat‐siRNAs) were also found in our results which enriched the tomato small RNAs repository. A large number of genes targeted by those miRNAs and siRNAs were predicted to be involved in the chilling injury responsive process and five of them were verified via degradome sequencing. Based on the above results, a regulatory model that comprehensively reveals the relationships between the small RNAs and their targets was set up. This work provides a foundation for further study of the regulation of miRNAs and siRNAs in the plant in response to chilling injury.  相似文献   

11.
周学  杜宜兰  金萍  马飞 《遗传》2015,37(9):855-864
MicroRNAs(miRNAs)是一类长度约为22nt的内源性非编码RNA,通过与靶基因转录本互补结合调控基因的表达。近年来,研究发现miRNA与癌症发生密切相关,miRNA可以直接充当癌基因或者抑癌基因而影响肿瘤的发生和生长。为更进一步揭示癌症相关miRNA的特征及靶基因的功能,文章通过数据库搜索及文献检索,在人类基因组中发现了475个癌症相关miRNA,系统地比较了癌症相关miRNA与非癌症miRNA以及基因内和基因间区癌症相关miRNA在保守性、SNP位点分布、癌谱及转录调控等特性。研究发现,癌症相关miRNA比非癌症miRNA保守性要强,发生SNP概率比较低,同时发现miRNA所涉及癌症数目与保守性成正相关。基因组定位分析发现,癌症相关miRNA比非癌症miRNA更倾向于成簇存在。进一步对宿主基因、癌症相关miRNA及作用的靶基因与癌症发生进行关联分析,发现一些非癌症miRNA的宿主基因倾向于被癌症miRNA作用。本研究结果为深入理解miRNA与癌症之间的关系,以及进一步为miRNA作为癌症诊断指示物提供理论依据。  相似文献   

12.
Chen L  Wang T  Zhao M  Tian Q  Zhang WH 《Planta》2012,235(2):375-386
MicroRNAs (miRNAs) play important roles in response of plants to biotic and abiotic stresses. Aluminum (Al) toxicity is a major factor limiting plant growth in acidic soils. However, there has been limited report on the involvement of miRNAs in response of plants to toxic Al3+. To identify Al3+-responsive miRNAs at whole-genome level, high-throughput sequencing technology was used to sequence libraries constructed from root apices of the model legume plant Medicago truncatula treated with and without Al3+. High-throughput sequencing of the control and two Al3+-treated libraries led to generation of 17.1, 14.1 and 17.4 M primary reads, respectively. We identified 326 known miRNAs and 21 new miRNAs. Among the miRNAs, expression of 23 miRNAs was responsive to Al3+, and the majority of Al3+-responsive mRNAs was down-regulated. We further classified the Al3+-responsive miRNAs into three groups based on their expression patterns: rapid-responsive, late-responsive and sustained-responsive miRNAs. The majority of Al3+-responsive miRNAs belonged to the ‘rapid-responsive’ category, i.e. they were responsive to short-term, but not long-term Al3+ treatment. The Al3+-responsive miRNAs were also verified by quantitative real-time PCR. The potential targets of the 21 new miRNAs were predicted to be involved in diverse cellular processes in plants, and their potential roles in Al3+-induced inhibition of root growth were discussed. These findings provide valuable information for functional characterization of miRNAs in Al3+ toxicity and tolerance.  相似文献   

13.
Wang J  Yang X  Xu H  Chi X  Zhang M  Hou X 《Gene》2012,505(2):300-308
The microRNAs are a new class of small non-coding endogenous RNAs with lengths of approximately ~21 nt. MicroRNAs perform their biological function via the degradation of the target mRNAs or by inhibiting protein translation. Until recently, only limited numbers of miRNAs were identified in Brassica oleracea, a vegetable widely cultivated around the world. In present study, 193 potential miRNA candidates were identified from 17 expressed sequence tag (ESTs) and 152 genome survey sequences (GSSs) in B. oleracea. These miRNA candidates were classified into 70 families using a well-defined comparative genome-based computational analysis. Most miRNAs belong to the miRNA169, miR5021, miR156 and miR158 families. Of these, 36 miRNA families are firstly found in Brassica species. Around 1393 B. oleracea genes were predicted as candidate targets of 175 miRNAs. The mutual relationship between miRNAs and the candidate target genes was verified by checking differentially expression levels using quantitative real-time polymerase chain reaction (qRT-PCR) and 5' RLM-RACE analyses. These target genes participate in multiple biological and metabolic processes, including signal transduction, stress response, and plant development. Gene Ontology analysis shows that the 818, 514, and 265 target genes are involved in molecular functions, biological processes, and cellular component respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis suggests that these miRNAs might regulate 186 metabolic pathways, including those of lipid, energy, starch and sucrose, fatty acid and nitrogen.  相似文献   

14.
15.

Background

A long juvenile period between germination and flowering is a common characteristic among fruit trees, including Malus hupehensis (Pamp.) Rehd., which is an apple rootstock widely used in China. microRNAs (miRNAs) play an important role in the regulation of phase transition and reproductive growth processes.

Results

M. hupehensis RNA libraries, one adult and one juvenile phase, were constructed using tree leaves and underwent high-throughput sequencing. We identified 42 known miRNA families and 172 novel miRNAs. We also identified 127 targets for 25 known miRNA families and 168 targets for 35 unique novel miRNAs using degradome sequencing. The identified miRNA targets were categorized into 58 biological processes, and the 123 targets of known miRNAs were associated with phase transition processes. The KEGG analysis revealed that these targets were involved in starch and sucrose metabolism, and plant hormone signal transduction. Expression profiling of miRNAs and their targets indicated multiple regulatory functions in the phase transition. The higher expression level of mdm-miR156 and lower expression level of mdm-miR172 in the juvenile phase leaves implied that these two small miRNAs regulated the phase transition. mdm-miR160 and miRNA393, which regulate genes involved in auxin signal transduction, could also be involved in controlling this process. The identification of known and novel miRNAs and their targets provides new information on this regulatory process in M. hupehensis, which will contribute to the understanding of miRNA functions during growth, phase transition and reproduction in woody fruit trees.

Conclusions

The combination of sRNA and degradome sequencing can be used to better illustrate the profiling of hormone-regulated miRNAs and miRNA targets involving complex regulatory networks, which will contribute to the understanding of miRNA functions during growth, phase transition and reproductive growth in perennial woody fruit trees.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1125) contains supplementary material, which is available to authorized users.  相似文献   

16.
Salt is one of the main environmental factors limiting plant growth and a better understanding of mechanisms of salt stress would aid efforts to bolster plant salt tolerance. MicroRNAs are well known for their important regulatory roles in response to abiotic stress in plants. In this study, high-throughput sequencing was employed to identify miRNAs in Populus tomentosa plantlets treated or not with salt (200 mM for 10 h). We found 141 conserved miRNAs belonging to 31 families, 29 non-conserved but previously-known miRNAs belonging to 26 families, and 17 novel miRNAs. Under salt stress, 19 miRNAs belonging to seven conserved miRNA families were significantly downregulated, and two miRNAs belonging to two conserved miRNA families were upregulated. Of seven non-conserved miRNAs with significantly altered expression, five were downregulated and two were upregulated. Furthermore, eight miRNAs were validated by qRT-PCR and their dynamic differential expressions were analyzed. In addition, 269 target genes of identified miRNAs were predicted and categorized by function. These results provide new insights into salt-responsive miRNAs in Populus.  相似文献   

17.
Drought stress is one of the most important abiotic stresses. Cotton is classified as drought tolerant crop but the regulatory mechanism is unknown. MicroRNAs (miRNAs) have been implicated important roles in stress responses in many plants. However, the study of miRNAs in cotton responsive to drought stress is limited, especially in early-maturing cotton. In this study, we performed deep sequencing of small RNAs to identify known and novel miRNAs involved in the regulation of drought stress and understand the expression profile of miRNAs in early-maturing cotton. Three cotton small RNA libraries: non-stressed Shizao1 (early-maturing cotton variety) library (NSS), drought-stressed Shizao1 library (DSS) and non-stressed Jimian958 (medium-maturing cotton variety) library (NSJ) were constructed for deep sequencing. As a result, we identified a total of 64 known and 67 novel miRNAs in the 3 libraries and 88 of them were dramatically differentially expressed (greater than twofold) during drought stress. In addition, we found the expression of 41 miRNAs increased or reduced more than twofold in early-maturing cotton variety compared with that in medium-maturing cotton variety. Our results significantly increased the number of miRNAs in cotton and revealed for the first time the expression profile of miRNAs for early-maturing cotton.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号