首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many double-stranded RNA (dsRNA) viruses are capable of transcribing and capping RNA within a stable icosahedral viral capsid. The turret of turreted dsRNA viruses belonging to the family Reoviridae is formed by five copies of the turret protein, which contains domains with both 7-N-methyltransferase and 2′-O-methyltransferase activities, and serves to catalyze the methylation reactions during RNA capping. Cypovirus of the family Reoviridae provides a good model system for studying the methylation reactions in dsRNA viruses. Here, we present the structure of a transcribing cypovirus to a resolution of ~ 3.8 Å by cryo-electron microscopy. The binding sites for both S-adenosyl-l-methionine and RNA in the two methyltransferases of the turret were identified. Structural analysis of the turret in complex with RNA revealed a pathway through which the RNA molecule reaches the active sites of the two methyltransferases before it is released into the cytoplasm. The pathway shows that RNA capping reactions occur in the active sites of different turret protein monomers, suggesting that RNA capping requires concerted efforts by at least three turret protein monomers. Thus, the turret structure provides novel insights into the precise mechanisms of RNA methylation.  相似文献   

2.
Escherichia coli DNA adenine methyltransferase (Dam) and Leucine-responsive regulatory protein (Lrp) are key regulators of the pap operon, which codes for the pilus proteins necessary for uropathogenic E. coli cellular adhesion. The pap operon is regulated by a phase variation mechanism in which the methylation states of two GATC sites in the pap regulatory region and the binding position of Lrp determine whether the pilus genes are expressed. The post-replicative reassembly of Dam, Lrp, and the local regulator PapI onto a hemimethylated pap intermediate is a critical step of the phase variation switching mechanism and is not well understood. We show that Lrp, in the presence and in the absence of PapI and nonspecific DNA, specifically protects pap regulatory GATC sites from Dam methylation when allowed to compete with Dam for assembly on unmethylated and hemimethylated pap DNA. The methylation protection is dependent upon the concentration of Lrp and does not occur with non-regulatory GATC sites. Our data suggest that only at low Lrp concentrations will Dam compete effectively for binding and methylation of the proximal GATC site, leading to a phase switch resulting in the expression of pili.  相似文献   

3.
Methylation of cytosine residues in the DNA is one of the most important epigenetic marks central to the control of differential expression of genes. We perform quantum mechanical calculations to investigate the catalytic mechanism of the bacterial HhaI DNA methyltransferase. We find that the enzyme nucleophile, Cys81, can attack C6 of cytosine only after it is deprotonated by the DNA phosphate group, a reaction facilitated by a bridging water molecule. This finding, which indicates that the DNA acts as both the substrate and the cofactor, can explain the total loss of activity observed in an analogous enzyme, thymidylate synthase, when the phosphate group of the substrate was removed. Furthermore, our results displaying the inability of the phosphate group to deprotonate the side chain of serine is in agreement with the total, or the large extent of, inactivity observed for the C81S mutant. In contrast to results from previous calculations, we find that the active site conserved residues, Glu119, Arg163, and Arg165, are crucial for catalysis. In addition, the enzyme-DNA adduct formation and the methyl transfer from the cofactor S-adenosyl-l-methionine are not concerted but proceed via stepwise mechanism. In many of the different steps of this methylation reaction, the transfer of a proton is found to be necessary. To render these processes possible, we find that several water molecules, found in the crystal structure, play an important role, acting as a bridge between the donating and accepting proton groups.  相似文献   

4.
BchU plays a role in bacteriochlorophyll c biosynthesis by catalyzing methylation at the C-20 position of cyclic tetrapyrrole chlorin using S-adenosylmethionine (SAM) as a methyl source. This methylation causes red-shifts of the electronic absorption spectrum of the light-harvesting pigment, allowing green photosynthetic bacteria to adapt to low-light environments. We have determined the crystal structures of BchU and its complex with S-adenosylhomocysteine (SAH). BchU forms a dimer and each subunit consists of two domains, an N-terminal domain and a C-terminal domain. Dimerization occurs through interactions between the N-terminal domains and the residues responsible for the catalytic reaction are in the C-terminal domain. The binding site of SAH is located in a large cavity between the two domains, where SAH is specifically recognized by many hydrogen bonds and a salt-bridge. The electron density map of BchU in complex with an analog of bacteriochlorophyll c located its central metal near the SAH-binding site, but the tetrapyrrole ring was invisible, suggesting that binding of the ring to BchU is loose and/or occupancy of the ring is low. It is likely that His290 acts as a ligand for the central metal of the substrate. The orientation of the substrate was predicted by simulation, and allows us to propose a mechanism for the BchU directed methylation: the strictly conserved Tyr246 residue acts catalytically in the direct transfer of the methyl group from SAM to the substrate through an S(N)2-like mechanism.  相似文献   

5.
The enzymes of the KsgA/Dim1 family are universally distributed throughout all phylogeny; however, structural and functional differences are known to exist. The well-characterized function of these enzymes is to dimethylate two adjacent adenosines of the small ribosomal subunit in the normal course of ribosome maturation, and the structures of KsgA from Escherichia coli and Dim1 from Homo sapiens and Plasmodium falciparum have been determined. To this point, no examples of archaeal structures have been reported. Here, we report the structure of Dim1 from the thermophilic archaeon Methanocaldococcus jannaschii. While it shares obvious similarities with the bacterial and eukaryotic orthologs, notable structural differences exist among the three members, particularly in the C-terminal domain. Previous work showed that eukaryotic and archaeal Dim1 were able to robustly complement for KsgA in E. coli. Here, we repeated similar experiments to test for complementarity of archaeal Dim1 and bacterial KsgA in Saccharomyces cerevisiae. However, neither the bacterial nor the archaeal ortholog could complement for the eukaryotic Dim1. This might be related to the secondary, non-methyltransferase function that Dim1 is known to play in eukaryotic ribosomal maturation. To further delineate regions of the eukaryotic Dim1 critical to its function, we created and tested KsgA/Dim1 chimeras. Of the chimeras, only one constructed with the N-terminal domain from eukaryotic Dim1 and the C-terminal domain from archaeal Dim1 was able to complement, suggesting that eukaryotic-specific Dim1 function resides in the N-terminal domain also, where few structural differences are observed between members of the KsgA/Dim1 family. Future work is required to identify those determinants directly responsible for Dim1 function in ribosome biogenesis. Finally, we have conclusively established that none of the methyl groups are critically important to growth in yeast under standard conditions at a variety of temperatures.  相似文献   

6.
The extraordinary topology of proteins belonging to the alpha/beta-knot superfamily of proteins is unexpected, due to the apparent complexities involved in the formation of a deep trefoil knot in a polypeptide backbone. Despite this, an increasing number of knotted structures are being identified; how such proteins fold remains a mystery. Studies on the dimeric protein YibK from Haemophilus influenzae have led to the characterisation of its folding pathway in some detail. To complement research into the folding of YibK, and to address whether folding pathways are conserved for members of the alpha/beta-knot superfamily, the structurally similar knotted protein YbeA from Escherichia coli has been studied. A comprehensive thermodynamic and kinetic analysis of the folding of YbeA is presented here, and compared to that of YibK. Both fold via an intermediate state populated under equilibrium conditions that is monomeric and considerably structured. The unfolding/refolding kinetics of YbeA are simpler than those found for YibK and involve two phases attributed to the formation of a monomeric intermediate state and a dimerisation step. In contrast to YibK, a change in the rate-determining step on the unfolding pathway for YbeA is observed with a changing concentration of urea. Despite this difference, both proteins fold by a mechanism involving at least one sequential monomeric intermediate that has properties similar to that observed during the equilibrium unfolding. The rate of dimerisation observed for YbeA and YibK is very similar, as is the rate constant for formation of the kinetic monomeric intermediate that precedes dimerisation. The findings suggest that relatively slow folding and dimerisation may be common attributes of knotted proteins.  相似文献   

7.
Spontaneous protein deamidation of labile asparagines (Asn), generating abnormal l-isoaspartyl residues (IsoAsp), is associated with cell aging and enhanced by an oxidative microenvironment. The presence of isopeptide bonds impairs protein structure/function. To minimize the damage, IsoAsp can be “repaired” by the protein l-isoaspartyl/d-aspartyl O-methyltransferase (PIMT) and S-adenosylmethionine (AdoMet) is the methyl donor of this reaction. PIMT is a repair enzyme that initiates the conversion of l-isoAsp (or d-Asp) residues to l-Asp residues. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease principally affecting motor neurons. The condition of oxidative stress reported in familial and sporadic forms of ALS prompted us to investigate Asn deamidation in ALS tissue. Erythrocytes (RBCs) were selected as a model system since they are unable to replace damaged proteins and protein methylesterification is virtually the only AdoMet-consuming reaction operating in these cells. Our data show that, in vitro assay, abnormal IsoAsp residues were significantly higher in ALS patients erythrocyte membrane proteins with an increased methyl accepting capability relative to controls (p < 0.05). Moreover, we observed a reduction in AdoMet levels, while AdoHcy concentration was comparable to that detected in the control, resulting in a lower [AdoMet]/[AdoHcy] ratio. Then, the accumulation of altered aspartyl residues in ALS patients is probably related to a reduced efficiency of the S-adenosylmethionine (AdoMet)-dependent repair system causing increased protein instability at Asn sites. The increase of abnormal residues represents a new protein alteration that may be present not only in red blood cells but also in other cell types of patients suffering from ALS.  相似文献   

8.
The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation.  相似文献   

9.
Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the histone code. One common feature of these activities is the recognition of lysines in methylated and unmethylated states, whether they are substrates, reaction products, or binding partners. We applied the concept of adding a lysine mimic to an established inhibitor (BIX-01294) of histone H3 lysine 9 methyltransferases G9a and G9a-like protein by including a 5-aminopentyloxy moiety, which is inserted into the target lysine-binding channel and becomes methylated by G9a-like protein, albeit slowly. The compound enhances its potency in vitro and reduces cell toxicity in vivo. We suggest that adding a lysine or methyl-lysine mimic should be considered in the design of small-molecule inhibitors for other methyl-lysine writers, erasers, and readers.  相似文献   

10.
11.
Type I restriction-modification (RM) systems are large, multifunctional enzymes composed of three different subunits. HsdS and HsdM form a complex in which HsdS recognizes the target DNA sequence, and HsdM carries out methylation of adenosine residues. The HsdR subunit, when associated with the HsdS-HsdM complex, translocates DNA in an ATP-dependent process and cleaves unmethylated DNA at a distance of several thousand base-pairs from the recognition site. The molecular mechanism by which these enzymes translocate the DNA is not fully understood, in part because of the absence of crystal structures. To date, crystal structures have been determined for the individual HsdS and HsdM subunits and models have been built for the HsdM-HsdS complex with the DNA. However, no structure is available for the HsdR subunit. In this work, the gene coding for the HsdR subunit of EcoR124I was re-sequenced, which showed that there was an error in the published sequence. This changed the position of the stop codon and altered the last 17 amino acid residues of the protein sequence. An improved purification procedure was developed to enable HsdR to be purified efficiently for biophysical and structural analysis. Analytical ultracentrifugation shows that HsdR is monomeric in solution, and the frictional ratio of 1.21 indicates that the subunit is globular and fairly compact. Small angle neutron-scattering of the HsdR subunit indicates a radius of gyration of 3.4 nm and a maximum dimension of 10 nm. We constructed a model of the HsdR using protein fold-recognition and homology modelling to model individual domains, and small-angle neutron scattering data as restraints to combine them into a single molecule. The model reveals an ellipsoidal shape of the enzymatic core comprising the N-terminal and central domains, and suggests conformational heterogeneity of the C-terminal region implicated in binding of HsdR to the HsdS-HsdM complex.  相似文献   

12.
Modification of protein residues by S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases impacts an array of cellular processes. Here we describe a new approach to quantitatively measure the rate of methyl transfer that is compatible with using protein substrates. The method relies on the ability of reverse-phase resin packed at the end of a pipette tip to quickly separate unreacted AdoMet from radiolabeled protein products. Bound radiolabeled protein products are eluted directly into scintillation vials and counted. In addition to decreasing analysis time, the sensitivity of this protocol allows the determination of initial rate data. The utility of this protocol was shown by generating a Michaelis-Menten curve for the methylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) protein by human protein arginine methyltransferase 1, variant 1 (hPRMT1v1), in just over 1 h. An additional advantage of this assay is the more than 3000-fold reduction in radioactive waste over existing protocols.  相似文献   

13.
Bernes S  Siman-Tov R  Ankri S 《FEBS letters》2005,579(28):6395-6402
The protozoan parasite Entamoeba histolytica expresses a cytosine-5 DNA methyltransferase (Ehmeth) that belongs to the DNMT2 protein family. The biological function of members of this DNMT2 family is unknown. In the present study, the 5' region of E. histolytica heat shock protein 100 (5'EHsp100) was isolated by affinity chromatography with 5-methylcytosine antibodies as ligand. The methylation status of 5'EHsp100 was confirmed by sodium bisulfite sequencing. We showed that the expression of EHsp100 was induced by heat shock, 5-azacytidine (5-AzaC), an inhibitor of DNA methyltransferase and Trichostatin A (TSA), an inhibitor of histone deacetylase. The effect of TSA on EHsp100 expression was rapidly reversed by removing the drug from the culture. In contrast, EHsp100 expression was still detectable one month after removing 5-AzaC from the media. Whereas 5-AzaC and TSA caused demethylation in the promoter region of EHsp100, no demethylation was observed following heat shock. Remarkably, DNA that includes three putative heat shock elements identified in the promoter region of EHsp100 bound to a protein of 37kDa present in the nuclear fraction of heat-shocked trophozoites but absent in the nuclear fraction of 5-AzaC and TSA treated trophozoites. Our data suggest that EHsp100 expression can be regulated by both a classical and an epigenetic mechanism.  相似文献   

14.
We report here that the expression of protein complexes in vivo in Escherichia coli can be more convenient than traditional reconstitution experiments in vitro. In particular, we show that the poor solubility of Escherichia coli DNA polymerase III ε subunit (featuring 3’-5’ exonuclease activity) is highly improved when the same protein is co-expressed with the α and θ subunits (featuring DNA polymerase activity and stabilizing ε, respectively). We also show that protein co-expression in E. coli can be used to efficiently test the competence of subunits from different bacterial species to associate in a functional protein complex. We indeed show that the α subunit of Deinococcus radiodurans DNA polymerase III can be co-expressed in vivo with the ε subunit of E. coli. In addition, we report on the use of protein co-expression to modulate mutation frequency in E. coli. By expressing the wild-type ε subunit under the control of the araBAD promoter (arabinose-inducible), and co-expressing the mutagenic D12A variant of the same protein, under the control of the lac promoter (inducible by isopropyl-thio-β-D-galactopyranoside, IPTG), we were able to alter the E. coli mutation frequency using appropriate concentrations of the inducers arabinose and IPTG. Finally, we discuss recent advances and future challenges of protein co-expression in E. coli.  相似文献   

15.
In mammals, DNA methylation is crucial for embryonic development and germ cell differentiation. The DNA methylation patterns are created by de novo-type DNA methyltransferases (Dnmts) 3a and 3b. Dnmt3a is crucial for global methylation, including that of imprinted genes in germ cells. In eukaryotic nuclei, genomic DNA is packaged into multinucleosomes with linker histone H1, which binds to core nucleosomes, simultaneously making contacts in the linker DNA that separates adjacent nucleosomes. In the present study, we prepared oligonucleosomes from HeLa nuclei with or without linker histone H1 and used them as a substrate for Dnmt3a. Removal of histone H1 enhanced the DNA methylation activity. Furthermore, Dnmt3a preferentially methylated the linker between the two nucleosome core regions of reconstituted dinucleosomes, and the binding of histone H1 inhibited the DNA methylation activity of Dnmt3a towards the linker DNA. Since an identical amount of histone H1 did not inhibit the activity towards naked DNA, the inhibitory effect of histone H1 was not on the Dnmt3a catalytic activity but on its preferential location in the linker DNA of the dinucleosomes. The central globular domain and C-terminal tail of the histone H1 molecule were indispensable for inhibition of the DNA methylation activity of Dnmt3a. We propose that the binding and release of histone H1 from the linker portion of chromatin may regulate the local DNA methylation of the genome by Dnmt3a, which is expressed ubiquitously in somatic cells in vivo.  相似文献   

16.
17.
18.
We have analyzed the importance of substrate methylation by S-adenosylmethionine-dependent methyltransferases for neuronal differentiation of P19 embryonal carcinoma cells. We show that treatment of cells with methyltransferase inhibitor adenosine dialdehyde (AdOx) interferes with neuronal differentiation. Retinoic acid (RA) and AdOx co-treated cells had a decreased number of neurites and a flattened morphology compared with cells differentiated by RA. Also, the amount of neuronal class III tubulin (Tuj1) decreased from 76% to 9.6% with AdOx-treatment. Gene expression levels of wnt-1, brn-2, neuroD, and mash-1 were also down-regulated by AdOx-treatment. But AdOx-treatment did not up-regulate BMP-4 and GFAP genes. Treatment of RA decreased E-cadherin expression during neuronal differentiation. However, in AdOx/RA co-treated cells, E-cadherin expression was restored to the control level. Also, mRNA expression of N-cadherin decreased with AdOx-treatment. Taken together, these data show that methylation reactions might influence the cell-fate decision and neuronal differentiation of P19 cells.  相似文献   

19.
In Neurospora, genes not paired during meiosis are targeted by meiotic silencing by unpaired DNA (MSUD). Here, our bimolecular fluorescence complementation (BiFC) study suggests that RNA-directed RNA polymerase, Dicer, Argonaute, and others form a silencing complex in the perinuclear region, with intimate interactions among the majority of them. We have also shown that SAD-2 is likely the anchor for this assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号