首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells   总被引:7,自引:0,他引:7  
Park JE  Yang JH  Yoon SJ  Lee JH  Yang ES  Park JW 《Biochimie》2002,84(12):1198-1205
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. In the present study, we evaluated lipid peroxidation-mediated cytotoxicity and oxidative DNA damage in U937 cells. Upon exposure of U937 cells to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the cells exhibited a reduction in viability and an increase in the endogenous production of reactive oxygen species (ROS), as measured by the oxidation of 2',7'-dichlorodihydrofluorescein. In addition, a significant decrease in the intracellular GSH level and the activities of major antioxidant enzymes were observed. We also observed lipid peroxidation-mediated oxidative DNA damage, reflected by an increase in 8-OH-dG level and loss of the ability of DNA to renature. When the cells were pretreated with the antioxidant N-acetylcysteine (NAC) or the spin trap alpha-phenyl-N-t-butylnitrone (PBN), lipid peroxidation-mediated cytotoxicity in U937 cells was protected. This effect seems to be due to the ability of NAC and PBN to reduce ROS generation induced by lipid peroxidation. These results suggest that lipid peroxidation resulted in a pro-oxidant condition of U937 cells by the depletion of GSH and inactivation of antioxidant enzymes, which consequently leads to a decrease in survival and oxidative damage to DNA. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in oxidative stress-induced cellular damage.  相似文献   

2.
Echinochrome A (6-ethyl-2,3,5,7,8-pentahydroxy-1,4-naphthoquinone) isolated from the body of sand dollar Scaphechinus mirabilis is an active substance of cardioprotective medication Histochrome and exerts a wide spectrum of anti-inflammatory activities. In the present paper, we conducted a comparative study of the antioxidant (radical-scavengering) properties of echinochrome A in 2,2′-azobis(2-methylpropionamidine) dihydrochloride?luminol and hemoglobin?hydrogen peroxide?luminol systems and assessed its impact on permeability of planar bilayer lipid membranes. Trolox was used as a reference antioxidant and ascorbic acid and dihydroquercetin are taken as standards. Echinochrome A shows moderate antioxidant activity, possessing higher antioxidant capacity than Trolox and ascorbic acid, but exhibiting lower antioxidant potential compared with dihydroquercetin in tests for antioxidant activity in both investigated systems. The test substances can be arranged in the following order according to the effectiveness of the antioxidant effect: dihydroquercetin > echinochrome A > Trolox > ascorbic acid. Echinochrome A does not lead to significant changes in the permeability of planar bilayer membranes in a dose range of 1.5 to 30 μМ. Our data indicate that echinochrome A has a rather high level of radical-scavengering activity without a primary membranotropic effect. It is thought that the high levels of the cardioprotective and anti-inflammatory activities of echinochrome A may be due not only to the ability of this substance to neutralize reactive oxygen species, but also to its capacity to generate physiological concentrations of hydrogen peroxide molecules in biological systems as signaling messengers of various metabolic processes and biochemical pathways. The suspected mechanisms of the biological activity of echinochrome A are discussed.  相似文献   

3.
Carboxyethyl-6-hydroxychromans (CEHC), the major metabolites of both tocopherols (Toc) and tocotrienols (Toc-3), have been found in human plasma. In the present study, the antioxidant properties of alpha- and gamma-CEHC were measured and compared with alpha- and gamma- tocopherols. Following results were obtained: (1)alpha- and gamma-CEHC have the same reactivities toward radicals and exert the same antioxidant activities against lipid peroxidation in organic solution as the corresponding parent tocopherols respectively; (2) the partition coefficient decreased in the order alpha-Toc (3.36) > gamma-Toc (3.14) > alpha-CEHC (2.26) > pentamethyl-6-chromanol (1.92) > gamma-CEHC (1.83) > 0 > Trolox (-0.97); (3) alpha- and gamma-CEHC scavenge aqueous radicals more efficiently but they inhibit the lipid peroxidation within the membranes less efficiently than the corresponding alpha- and gamma-Toc, respectively; (4) alpha-CEHC inhibits the oxidation synergistically with ascorbate; and (5) alpha- and gamma-CEHC reduce Cu(II) to give Cu(I) and corresponding quinones as major product, but the prooxidant effect of CEHC in the presence of cupric ion was small. These results imply that CEHC may act as an antioxidant in vivo especially for those who take tocopherol supplement.  相似文献   

4.
The synthesis of a new amphiphilic antioxidant called PBNLP and derived from both alpha-phenyl-N-tert-butyl nitrone (PBN) and lipoic acid was described. Grafting a lactobionamide moiety onto the aromatic group of the PBN provided the water solubility of this compound. In vitro preliminary biological evaluations of its antioxidant capacity were performed using the KRL biological test based on free radical-induced hemolysis. The PBNLP induces a protection of erythrocytes against exogenous free radicals higher than that measured with lipoic acid or PBN alone or with lipoic acid or PBN derivatives in admixtures.  相似文献   

5.
The effect of two series of amphiphilic quaternary ammonium salts on some properties of phospholipid membranes was studied. The compounds of one series, N-benzyl-N,N-dimethyl-N-alkyl ammonium bromides, exert a destructive effect on membranes and are treated as reference compounds. The compounds of the other series, N-(3,5-di-t-butyl-4-hydroxy)benzyl-N,N-dimethyl-N-alkyl ammonium bromides, are derivatives of the former ones, exhibit antioxidant properties, and do only relatively slight damage to the membranes. The aim of the work was to explain the difference in molecular interaction with membranes between the two kinds of hydrophobic compounds. Thermodynamic methods, a new mixing technique, and monolayer and quantum calculation methods were used. It has been shown that the antioxidant molecules are less hydrophobic than those of the reference compounds and disturb the membrane organization to a lesser extent. On the basis of monolayer data, we suggest that the studied antioxidant behaves like a substitutional impurity, whereas the reference behaves like an interstitial one.  相似文献   

6.
The pyrrolopyrimidine U101033E is a therapeutic compound potentially useful in stroke, head injury and other oxidative stress conditions. Electron paramagnetic resonance (EPR) techniques of spin labeling and spin trapping in conjunction with measures of lipid and protein oxidation have been used to investigate the proposed antioxidant capacity of U101033E. We report potent antioxidant activity of this agent in aqueous cell-free solution as measured by spin trapping. U101033E significantly (P<0.005) reduces the formation of the EPR active spin trap N-t-butyl-alpha-phenylnitrone (PBN)-radical adduct by 17.1% at a concentration of 1 microM, four orders of magnitude less than the concentration of PBN. As measured by the decrease in signal intensity of lipid-resident nitroxide stearate spin probes, an EPR assay for lipid peroxidation, this pyrrolopyrimidine compound efficiently protected against hydroxyl radical-induced lipid peroxidation in cortical synaptosomal membranes deep within the membrane bilayer, but not closer to the membrane surface. In addition, U101033E partially prevents synaptosomal protein oxidation in the presence of Fe(II); however, U101033E demonstrates some protein oxidative effects itself. These results are supportive of the proposed role of U101033E as a lipid-specific antioxidant, especially for protection against lipid peroxidation that occurs deep within the membrane bilayer, but raise some potential concerns about the oxidative nature of this agent toward proteins.  相似文献   

7.
《Free radical research》2013,47(9):1054-1063
Abstract

The antioxidant properties of the phenothiazine nucleus (PHT) associated with mitochondrial membranes and liposomes were investigated. PHT exhibited hydrophobic interaction with lipid bilayers, as shown by the quenching of excited states of 1-palmitoyl-2[10-pyran-1-yl)]-decanoyl-sn-glycero-3-phophocholine (PPDPC) incorporated in phosphatidylcholine/phosphatidylethanolamine/cardiolipin liposomes, observed even in high ionic strength; and by the spectral changes of PHT following the addition of mitochondrial membranes. Inserted into bilayers, 5 μM PHT was able to protect lipids and cytochrome c against pro-oxidant agents and exhibited spectral changes suggestive of oxidative modifications promoted by the trapping of the reactive species. In this regard, PHT exhibited the ability to scavenge DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical. PHT was also able to protect rat liver mitochondria against peroxide- and iron-induced oxidative damage and consequent swelling. At the concentration range in which the antioxidant properties were observed, PHT did not cause alterations in the membrane structure and function. This study contributes to the comprehension of the correlation structure and function of phenothiazines and antioxidant properties.  相似文献   

8.
Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here—in association with its reported signaling effects—could be an explanation to its beneficial effects observed in vivo.  相似文献   

9.
Peroxidation of lipids is of significant interest owing to the evidence that peroxyl radicals and products of lipid peroxidation may be involved in the toxicity of compounds initiating a deteriorative reaction in the processing and storage of lipid-containing foods. In view of the significance of the antioxidant role of the dietary compound vitamin E and its water-soluble analogue Trolox in research of lipid-containing foods, it is desirable to determine more specifically how and where they operate its antioxidant activity in lipid membranes. In this study, unilamellar liposomes of phosphatidylcholine were used as membrane mimetic systems to estimate the antioxidant properties of vitamin E and Trolox and establish a relationship between their interactions with the membrane and their consequent antioxidant activity. Lipid peroxidation was initiated by the peroxyl radical (ROO) in lipid and aqueous media by the thermal decomposition of azocompounds and was assessed by the fluorescence intensity decay of the fluorescent probe diphenylhexatriene propionic acid. Results obtained showed that membrane lipoperoxidation is related not only to the scavenging characteristics of the compounds studied but also to their ability to interact with the lipid bilayers, and consequently liposomes provide additional information to that obtained currently from assays performed in aqueous buffer media.  相似文献   

10.
Amphiphilic signal sequences with the potential to form alpha-helices with a polar, charged face and an apolar face are common in proteins which are imported into mitochondria, in the PTS permeases of bacteria, and in bacterial rhodopsins. Synthetic peptides of such sequences partition into the surface region of lipid membranes where they can adopt different secondary structures. A finely controlled balance of electrostatic and hydrophobic interactions determines the 'affinity' of amphiphilic signal peptides for lipid membranes, as well as the structure, orientation and depth of penetration of these peptides in lipid bilayer membranes. The ability of an individual peptide to associate with lipid bilayer membranes in several different modes is, most likely, a general feature of amphiphilic signal peptides and is reflected in several common physical properties of their amino acid sequences.  相似文献   

11.
The antioxidative activity of two series of amphiphilic compounds from a group of quaternary ammonium salts has been investigated. They were so-called bifunctional surfactants synthesized to be used as common pesticides or as antioxidants. The latter application was to be ensured by providing the compounds studied with an antioxidant group. Studies on antioxidative possibilities of those compounds were performed on pig erythrocytes. Due to their hydrophobic parts, they anchor in the erythrocyte membrane and influence the degree of lipid oxidation in the erythrocyte membrane subjected to UV radiation. It was found that compounds of both series decreased the oxidation of the membrane lipids. The inhibition of this oxidation increased with the length of their hydrophobic chains up to fourteen carbon atoms. The compounds of the longest hydrophobic chains showed a somewhat weaker antioxidative activity. Of the two series studied compounds were more effective having bromide ions as counterions. The corresponding compounds of a second series (chlorides) protected erythrocyte significantly weaker against oxidation. The effect of the compounds on fluidity of the erythrocyte membrane has been studied in order to explain the oxidation results. Change in fluidity of the erythrocyte ghost membranes was found also dependent on length of the hydrophobic part of the compounds and was more pronounced in the case of bromide surfactants. The final conclusion is that the compounds studied can be succesfully used as antioxidant agents of good efficacy.  相似文献   

12.
We previously reported that caffeoyl-amino acidyl-hydroxamic acid (CA-Xaa-NHOH) acted as both a good antioxidant and tyrosinase inhibitor, in particular when caffeic acid was conjugated with proline or amino acids having aromatic ring like phenylalanine. Here, various hydroxycinnamic acid (HCA) derivatives were further conjugated with phenylalanyl hydroxamic acid and prolyl hydroxamic acid (HCA-Phe-NHOH and HCA-Pro-NHOH) to study the structure and activity relationship as both antioxidants and tyrosinase inhibitors. When their biological activities were evaluated, all HCA-Phe-NHOH and HCA-Pro-NHOH exhibited enhanced antioxidant activity compared to HCA alone. Moreover, derivatives of caffeic acid, ferulic acid, and sinapic acid inhibited lipid peroxidation more efficiently than vitamin E analogue (Trolox). In addition, derivatives of caffeic acid and sinapic acid efficiently inhibited tyrosinase activity and reduced melanin content in melanocytes Mel-Ab cell.  相似文献   

13.
Quantitative kinetic methods of autoxidation are used to determine the antioxidant activities of two water-soluble antioxidants of the chromanol type, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and 6-hydroxy-2,5,7,8- tetramethyl-2-N,N,N-trimethylethanaminium methylbenzene-sulfonate (MDL 73404), during free radical peroxidation of phospholipid membranes of different charge types. The stoichiometric factor (n) for peroxyl radical trapping for both Trolox and MDL 73404 was found to be 2. Trolox was found to partition partially, approximately 20%, into the lipid phase of liposomes. The antioxidant activity of Trolox during peroxidation of membranes determined by measurements of the absolute rate constant for inhibition of oxygen uptake,kinh, was found to vary with the membrane surface charge that is controlled by variation in pH. When peroxidation is initiated in the lipid phase by azo-bis-2,4-dimethylvaleronitrile (ADVN), using a typical zwitterionic liposome, dilinoleoylphosphatidyl choline (DLPC), the kinh was found to be 2.98 × 103 M−1s−1. The kinh of Trolox increased approximately 2-fold for membranes that have positive surface, including DLPC at pH 4, DLPC containing stearylamine at pH 7, and for a membrane of dimyristoylphosphatidic acid containing linoleic acid (DMPA/LA). Conversely, Trolox does not inhibit peroxidation of negatively charged dilinoleoylphosphatidyl glycerol (DLPG) at pH 7–11. Studies made of the positively charged MDL 73404 show that its antioxidant activity using DLPC and DLPG is pH dependent. Trolox inhibits the peroxidations of DLPC initiated in the aqueous phase by azo-bis(2-amidinopropane·HCl)(ABAP) at pH 4 or 7. However, Trolox does not inhibit the peroxidation of DLPG at pH 7. The different antioxidant activities of Trolox and MDL 73404 are rationalized in terms of a peroxyl-radical diffusion model and specific charge interactions between antioxidants and membrane surface.  相似文献   

14.
Abstract: Oxidative damage in the CNS is proposed to play a role in many acute and chronic neurodegenerative disorders. Accordingly, the nitrone spin trap α-phenyl- N - tert -butylnitrone (PBN), which reacts covalently with free radicals, has shown efficacy in a variety of animal models of CNS injury. We have synthesized a number of cyclic variants of PBN and examined their activity as radical traps and protectants against oxidative damage in CNS tissue. By using electron spin resonance spectroscopy, the cyclic nitrones MDL 101,002 and MDL 102,832 were shown to trap radicals in a manner similar to that of PBN. All cyclic nitrones tested prevented hydroxyl radical-dependent degradation of 2-deoxyribose and peroxyl radical-dependent oxidation of synaptosomes more potently than PBN. The radical scavenging properties of the cyclic nitrones contributed to a three- to 25-fold increase in potency relative to PBN against oxidative damage and cytotoxicity in cerebellar granule cell cultures. Similar to the phenolic antioxidant MDL 74,722, the nitrones minimized seizures and delayed the time to death in mice following central injection of ferrous iron. Although iron-induced lipid peroxidation was inhibited by MDL 74,722, the nitrones had no effect on this biochemical end point, indicating that iron-induced mortality does not result solely from lipid peroxidation and suggesting additional neuroprotective properties for the nitrones. These results indicate that cyclic nitrones are more potent radical traps and inhibitors of lipid peroxidation in vitro than PBN, and their ability to delay significantly iron-induced mortality in vivo suggests they may be useful in the treatment of acute and chronic neurodegeneration. Furthermore, the stability of the spin trap adducts of the cyclic nitrones provides a new tool for the study of oxidative tissue injury.  相似文献   

15.
Environmental stress in the Arctic region leads to damage in plant membranes as a result of oxidation processes. To withstand these stress conditions, plants are expected to produce antioxidants that differ from phenolics. Here, we investigated the chemical composition and antioxidative activities of four Arctic flowering plant species (Dryas octopetala, Carex rupestris, Silene uralensis and Deschampsia alpina.) through in vitro measurements of the free radical scavenging activities (FRS), inhibition of lipid peroxidation (ILP) and trolox equivalent antioxidant capacities (TEAC). D. octopetala exhibited the highest ILP (76.45?%) and FRS (86.58?%) activities. The TEAC values were higher than those of the Trolox vitamin E standard in all four species. Overall, the antioxidative activity was highest in D. octopetala, followed by C. rupestris, S. uralensis and D. alpina. Electrospray ionization tandem mass spectrometric (ESI–MS/MS) analysis of methanolic extracts of these plants revealed the presence of organoselenides, linear alkylbenzenesulfonates (LAS) and oligosaccharides, some of which are reported as antioxidants in the literature. Hence, it is likely that the antioxidant activities exhibited by these plants are not only related to the production of phenolics. This is the first report of the antioxidant potential of four Arctic flowering plants and the presence of selenides in D. octopetala and S. uralensis, and the production of LAS in C. rupestris. Our findings suggest that these plants can be used as nutraceutical sources of selenium and as biomarkers for environmental pollution.  相似文献   

16.
Amphotericin B (AmB) is a well-known polyene macrolide antibiotic used to treat systemic fungal infections. AmB targets more efficiently fungal than animal membranes. However, there are only minor differences in the mode of action of AmB against both types of membranes, which is a source of AmB toxicity. In this work, we analyzed interactions of two low toxic derivatives of AmB (SAmE and PAmE), synthesized in our laboratory, with lipid membranes. Molecular dynamics simulations of the lipid bilayers containing ergosterol (fungal cells) or cholesterol (animal cells) and the studied antibiotic molecules were performed to compare the structural and dynamic properties of AmB derivatives and the parent drug inside the membrane. A number of differences was found for AmB and its derivatives' behavior in cholesterol- and ergosterol-containing membranes. We found that PAmE and SAmE can penetrate deeper into the hydrophobic region of the membrane compared to AmB. Modification of the amino and carboxyl group of AmB also resulted in the conformational transition within the antibiotic's polar head. Wobbling dynamics differentiation, depending on the sterol present, was discovered for the AmB derivatives. These differences may be interpreted as molecular factors responsible for the improved selectivity observed macroscopically for the studied AmB derivatives.  相似文献   

17.
The oxidation of unsaturated lipids commonly occurs at oil-water interfaces in heterogeneous foods (such as emulsions), and so there is a need for surface-active antioxidants to inhibit lipid oxidation. In this study, catechin was oxidatively polymerized by horseradish peroxidase to obtain catechin polymers (CTP). An amphiphilic antioxidant was then produced by conjugating CTP with egg white proteins (EWP) using a hydrogen peroxide-ascorbic acid pair as a radical initiator system. The covalent attachment of CTP to EWP was confirmed by electrophoresis, liquid chromatography-mass spectrometry, and fluorescence analyses. The antioxidant capacity of CTP-EWP conjugates was evaluated using several in vitro models. The conjugates exhibited strong scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (79% at 1 mg/mL), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (97% at 0.5 mg/mL), and had a high ferric reducing power. Furthermore, CTP-EWP conjugates exhibited an inhibitive effect on lipid peroxidation in linoleic acid oil-in-water emulsions, indicating that the conjugates may have potential applications in food, pharmaceutical and cosmetic industries.  相似文献   

18.
Novel amide derivatives of trolox, 3,5-di-tert-butyl-4-hydroxybenzoic acid, (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid and cinnamic acid with cysteamine and l-cysteine ethyl ester were synthesised. In four cases, the disulfide derivatives were also isolated and tested. All compounds were examined for antioxidant activity, expressed as their ability to inhibit lipid peroxidation and to scavenge free radicals. They were found to demonstrate up to 17-fold better activity than that of the parent antioxidant acids. They could reduce acute inflammation up to 87%. The most active antioxidant compounds were further tested for their in vivo hypolipidemic effect, which ranged from 47% to 73%, and for their ability to protect the liver against oxidative toxicity caused by high paracetamol dose. The disulfide derivatives of 3,5-di-tert-butyl-4-hydroxybenzoic acid and cinnamic acid had no antioxidant activity and presented equal or lower anti-inflammatory effect than their thiol analogues, indicating that their molecular characteristics may not permit biological barrier penetration.  相似文献   

19.
Nitric oxide (·NO) and nitrogen dioxide (·NO2) are hydrophobic gases. Therefore, lipid membranes and hydrophobic regions of proteins are potential sinks for these species. In these hydrophobic environments, reactive nitrogen species will exhibit different chemistry than in aqueous environments due to higher local concentrations and the lack of hydrolysis reactions. The peroxynitrite anion (ONOO-) and peroxynitrous acid (ONOOH) can freely pass through lipid membranes, making peroxynitrite-mediated reactions in a hydrophobic environment also of extreme relevance. The reactions observed by these reactive nitrogen species in a hydrophobic milieu include oxidation, nitration and even potent chain-breaking antioxidant reactions. The physiological and toxicological relevance of these reactions is discussed.  相似文献   

20.
The nitrones alpha-phenyl-N-tert-butyl nitrone (PBN), sodium 2-sulfophenyl-N-tert-butyl nitrone (S-PBN) and disodium 2,4-disulfophenyl-N-tert-butyl nitrone (NXY-059) are neuroprotective in a variety of rodent models. The objective of the current studies was to compare the ability of PBN, S-PBN, and NXY-059 to form radical adducts and to prevent salicylate oxidation in an aqueous system. For the electron spin resonance (ESR) studies, hydroxyl radicals were generated with ultraviolet (UV) light and hydrogen peroxide. Secondary radicals were then produced by the addition of methanol, ethanol, isopropanol, dimethylsulfoxide, tetrahydrofuran or 1,4-dioxane. In addition, competition spin trapping studies were performed using PBN-alpha-(13) C and either S-PBN or NXY-059. In the salicylate studies, PBN, S-PBN and NXY-059 were compared to a variety of other antioxidants and reference compounds (cysteine, glutathione, ascorbate, uric acid, Tempo, Trolox, and Tirilizad) for their ability to prevent 2,3- and 2,5-dihydroxybenzoic acid formation induced by hydroxyl radical generating systems. All 3 nitrones trapped carbon- and oxygen-centered radicals to produce ESR-detectable radical adducts. Each nitrone also prevented salicylate oxidation, with PBN being the most effective. The ability of these 3 nitrones to prevent salicylate oxidation resembled that of most of the other compounds tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号