首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endothelial glycocalyx is a layer of proteoglycans and associated glycosaminoglycans lining the vascular lumen. In vivo, the glycocalyx is highly hydrated, forming a substantial endothelial surface layer (ESL) that contributes to the maintenance of endothelial function. As the endothelial glycocalyx is often aberrant in vitro and is lost during standard tissue fixation techniques, study of the ESL requires use of intravital microscopy. To best approximate the complex physiology of the alveolar microvasculature, pulmonary intravital imaging is ideally performed on a freely-moving lung. These preparations, however, typically suffer from extensive motion artifact. We demonstrate how closed-chest intravital microscopy of a freely-moving mouse lung can be used to measure glycocalyx integrity via ESL exclusion of fluorescently-labeled high molecular weight dextrans from the endothelial surface. This non-recovery surgical technique, which requires simultaneous brightfield and fluorescent imaging of the mouse lung, allows for longitudinal observation of the subpleural microvasculature without evidence of inducing confounding lung injury.  相似文献   

2.
Alterations in retinal blood flow can contribute to, or be a consequence of, ocular disease and visual dysfunction. Therefore, quantitation of altered perfusion can aid research into the mechanisms of retinal pathologies. Intravital video microscopy of fluorescent tracers can be used to measure vascular diameters and bloodstream velocities of the retinal vasculature, specifically the arterioles branching from the central retinal artery and of the venules leading into the central retinal vein. Blood flow rates can be calculated from the diameters and velocities, with the summation of arteriolar flow, and separately venular flow, providing values of total retinal blood flow. This paper and associated video describe the methods for applying this technique to mice, which includes 1) the preparation of the eye for intravital microscopy of the anesthetized animal, 2) the intravenous infusion of fluorescent microspheres to measure bloodstream velocity, 3) the intravenous infusion of a high molecular weight fluorescent dextran, to aid the microscopic visualization of the retinal microvasculature, 4) the use of a digital microscope camera to obtain videos of the perfused retina, and 5) the use of image processing software to analyze the video. The same techniques can be used for measuring retinal blood flow rates in rats.  相似文献   

3.
Perfluorocarbon (PFC) emulsions used as artificial oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid‐based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically‐used PEs. The rheological behavior of the mixtures was analyzed in vitro in parallel with in vivo analysis of blood flow in the microcirculation using intravital microscopy, when PEs were administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation and increased blood viscosity in a shear dependent fashion. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo compared to nonaggregating mixtures of PFC and PEs. For the PEs evaluated, human serum albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rates (e.g., arterioles, venules, and pulmonary circulation) when used in a clinical setting, because persistent aggregates could cause capillary occlusion, decreased perfusion, pulmonary emboli or focal ischemia. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:796–807, 2013  相似文献   

4.
IntroductionThe paper describes an alternative method for quantification of in vivo ADP-induced thromboembolism. The aim of the studies was to develop a method of quantification which would not require either extravasation or labelling of platelets. Our proposed approach is based on the monitoring of changes of blood flow with the use of laser Doppler flowmetry.ResultsThe injection of ADP resulted in a dose-dependent reduction of the blood flow in the mesentery. These responses were fully attributable to blood platelet aggregation, as shown by the lack of the effect in platelet-depleted mice, and significantly reduced responses in mice pretreated with cangrelor and eptifibatide. No platelet aggregate formation in mesenteric vessels was revealed by intravital microscopy, while ex vivo imaging showed accumulation of fluorescent labelled platelets in the lung.ConclusionsInjection of ADP to the venous system results in the formation of platelet aggregates predominantly in the lung. This results in reversible blood flow cessation in peripheral blood vessels. The measurement of this blood flow cessation in the mesentery allows indirect measurement of ADP-induced pulmonary thromboembolism. We suggest that this approach can be useful for in vivo screening for antiplatelet drug candidates.  相似文献   

5.
Vascular infusions of 15-microm-diameter microspheres are used to study pulmonary blood flow distribution. The sites of microsphere lodging and their effects on microvascular perfusion are debated but unknown. Using intravital microscopy of the subpleural surface of rat lungs, we directly observed deposition of fluorescent microspheres. In a pump-perfused lung model, approximately 0.5 million microspheres were infused over 30 s into the pulmonary artery of seven rats. Microsphere lodging was analyzed for the location in the microvasculature and the effect on local flow after lodging. On average, we observed 3.2 microspheres per 160 alveolar facets. The microspheres always entered the arterioles as singlets and lodged at the inlets to capillaries, either in alveolar corner vessels or small arterioles. In all cases, blood flow continued either around the microspheres or into the capillaries via adjacent pathways. We conclude that 15-microm-diameter microspheres, in doses in excess of those used in typical studies, have no significant impact on pulmonary capillary blood flow distribution.  相似文献   

6.
目的: 由于传统呼吸调控环路忽略了对血液循环的决定性作用,肺(静脉)血管容量相关研究甚少,亟需建立肺血管容量测量方法。方法: 选择正常志愿者完成CT全肺扫描,图像数据经过计算机软件分析处理,从肺尖到肺底以40~50层进行肺野手工切划,相邻层间由计算机自动模拟连接,在去除干扰后进行全肺血管(≥0.6 mm)高精度三维立体成像技术处理,进而计算全肺和肺血管容积。结果: 12例正常志愿者从肺尖到肺底CT扫描图片层数为530±98(431~841)张。全肺和肺血管的总容积是3705±857(2398~5383)ml ,肺血管血液总的容积是125±32(94~201)ml。按肺静脉系统血管容量约为全肺血管血液容量一半计算,应该是63±16(47~100)ml。结论: 肺CT扫描数据分析三维立体成像建立肺血管容量无创测量方法精确可行。  相似文献   

7.
The dynamic light scattering methods are widely used in biomedical diagnostics involving evaluation of blood flow. However, there exist some difficulties in quantitative interpretation of backscattered light signals from the viewpoint of diagnostic information. This study considers the application of the high‐speed videocapillaroscopy (VCS) method that provides the direct measurement of the red blood cells (RBCs) velocity into a capillary. The VCS signal presents true oscillation nature of backscattered light caused by moving RBCs. Thus, the VCS signal can be assigned as a reference one with respect to more complicated signals like in laser Doppler flowmetry (LDF). An essential correlation between blood flow velocity oscillations in a separate human capillary and the integral perfusion estimate obtained by the LDF method has been found. The observation of blood flow by the VCS method during upper arm occlusion has shown emergence of the reverse blood flow effect in capillaries that corresponds to the biological zero signal in the LDF. The reverse blood flow effect has to be taken into account in interpretation of LDF signals.   相似文献   

8.
The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.  相似文献   

9.
Leukocyte endothelial cell interaction is a fundamentally important process in many disease states. Current methods to analyze such interactions include the parallel-plate flow chamber and intravital microscopy. Here, we present an improvement of the traditional intravital microscopy that allows leukocyte-endothelial cell interaction to be studied from the time the leukocyte makes its initial contact with the endothelium until it adheres to or detaches from the endothelium. The leukocyte is tracked throughout the venular tree with the aid of a motorized stage and the rolling and adhesive behavior is measured off-line. Because this method can involve human error, methods to automate the tracking procedure have been developed. This novel tracking method allows for a more detailed examination of leukocyte-endothelial cell interactions. Published: August 27, 2004.  相似文献   

10.
Optical microscopy, when applied to livinganimals, provides a powerful means of studying cell biology in the mostphysiologically relevant setting. The ability of two-photon microscopyto collect optical sections deep into biological tissues has opened upthe field of intravital microscopy to high-resolution studies of the brain, lens, skin, and tumors. Here we present examples of the way inwhich two-photon microscopy can be applied to intravital studies ofkidney physiology. Because the kidney is easily externalized withoutcompromising its function, microscopy can be used to evaluate variousaspects of renal function in vivo. These include cell vitality andapoptosis, fluid transport, receptor-mediated endocytosis, blood flow, and leukocyte trafficking. Efficient two-photon excitation of multiple fluorophores permits comparison of multiple probes andsimultaneous characterization of multiple parameters and yields spectral information that is crucial to the interpretation of imagescontaining uncharacterized autofluorescence. The studies described heredemonstrate the way in which two-photon microscopy can provide a levelof resolution previously unattainable in intravital microscopy,enabling kinetic analyses and physiological studies of the organs ofliving animals with subcellular resolution.

  相似文献   

11.
A complex technique for pulmonary circulation study involving catheterization of pulmonary artery and transbronchial electroplethysmography has been tested in rats. The technique permits pulmonary artery pressure measurement and registration of electrical resistance in the lung lobe of closed-chest animals with the subsequent estimation of blood flow, blood volume and air content in the lungs expressed in adequate units per unit of organ volume. The experimental data characterizing standard values of the above parameters in rats are presented.  相似文献   

12.
The recent resurgence of interest in the use of intravital microscopy in lung research is a manifestation of extraordinary progress in visual imaging and optical microscopy. This review evaluates the tools and instrumentation available for a number of imaging modalities, with particular attention to recent technological advances, and addresses recent progress in use of optical imaging techniques in basic pulmonary research.1 Limitations of existing methods and anticipated future developments are also identified. Although there have also been major advances made in the use of magnetic resonance imaging, positron emission tomography, and X-ray and computed tomography to image intact lungs and while these technologies have been instrumental in advancing the diagnosis and treatment of patients, the purpose of this review is to outline developing optical methods that can be evaluated for use in basic research in pulmonary biology.  相似文献   

13.
Metastasis is a major cause for cancer-related morbidity and mortality. Metastasis is a multistep process and due to its complexity, the exact cellular and molecular processes that govern metastatic dissemination and growth are still elusive. Live imaging allows visualization of the dynamic and spatial interactions of cells and their microenvironment. Solid tumors commonly metastasize to the lungs. However, the anatomical location of the lungs poses a challenge to intravital imaging. This protocol provides a relatively simple and quick method for ex vivo live imaging of the dynamic interactions between tumor cells and their surrounding stroma within lung metastasis. Using this method, the motility of cancer cells as well as interactions between cancer cells and stromal cells in their microenvironment can be visualized in real time for several hours. By using transgenic fluorescent reporter mice, a fluorescent cell line, injectable fluorescently labeled molecules and/or antibodies, multiple components of the lung microenvironment can be visualized, such as blood vessels and immune cells. To image the different cell types, a spinning disk confocal microscope that allows long-term continuous imaging with rapid, four-color image acquisition has been used. Time-lapse movies compiled from images collected over multiple positions and focal planes show interactions between live metastatic and immune cells for at least 4 hr. This technique can be further used to test chemotherapy or targeted therapy. Moreover, this method could be adapted for the study of other lung-related pathologies that may affect the lung microenvironment.  相似文献   

14.
脑血流量测量对于脑血管疾病、脑肿瘤诊断和疗效评估具有重要的临床价值。PET是基于正电子示剂技术无创性、精确测量脑血流量的方法,正日益广泛地应用于临床。按照PET测量脑血流量的方法和使用的正电子示踪剂不同,其测量方法分为平衡法、放射自显影法和动力学方法三种。18O-H2O示踪剂PET测量脑血流量被认为测量脑血流方法的"金标准"。随着PET设备分辨率提高、新的图像重建方法使用和PET与MRI图像融合技术不断成熟,18F-FDG首次通过、采用图像衍生动脉输入函数(imagederived arterial input function,IDAIF)替代动脉抽血样精确测量脑血量方法受到广泛重视,有可能逐步取代高成本的18O-H2O测量脑血流量。PET无创、方便和精确测量脑血流量的方法在临床应使用有助于脑血管性疾病、脑肿瘤和脑退行性病变早期诊断、鉴别诊断和个性化医疗。本文介绍PET脑血流量测量原理、方法和临床应用进展。  相似文献   

15.
Understanding cardiac blood flow patterns has many applications in analysing haemodynamics and for the clinical assessment of heart function. In this study, numerical simulations of blood flow in a patient-specific anatomical model of the left ventricle (LV) and the aortic sinus are presented. The realistic 3D geometry of both LV and aortic sinus is extracted from the processing of magnetic resonance imaging (MRI). Furthermore, motion of inner walls of LV and aortic sinus is obtained from cine-MR image analysis and is used as a constraint to a numerical computational fluid dynamics (CFD) model based on the moving boundary approach. Arbitrary Lagrangian–Eulerian finite element method formulation is used for the numerical solution of the transient dynamic equations of the fluid domain. Simulation results include detailed flow characteristics such as velocity, pressure and wall shear stress for the whole domain. The aortic outflow is compared with data obtained by phase-contrast MRI. Good agreement was found between simulation results and these measurements.  相似文献   

16.
A midsystolic plateau differentiates the pattern of fetal pulmonary trunk blood flow from aortic flow. To determine whether this plateau arises from interactions between the left (LV) and right ventricle (RV) via the ductus arteriosus or from interactions between the RV and the lung vasculature, we measured blood flows and pressures in the pulmonary trunk and aorta of eight anesthetized (ketamine and alpha-chloralose) fetal lambs. Wave-intensity analysis revealed waves of energy traveling forward, away from the LV and the RV early in systole. During midsystole, a wave of energy traveling back toward the RV decreased blood flow velocity from the RV and produced the plateau in blood flow. Calculations revealed that this backward-traveling wave originated as a forward-traveling wave generated by the RV that was reflected from the lung vasculature back toward the heart and not as a forward-traveling wave generated by the LV that crossed the ductus arteriosus. Elimination of this backward-traveling wave and its associated effect on RV flow may be an important component of the increase in RV output that accompanies birth.  相似文献   

17.
Using high-resolution intravital charge-coupled device video microscopy, we visualized the epicardial capillary network of the beating canine heart in vivo to elucidate its functional role under control conditions, during reactive hyperemia (RH), and during intracoronary adenosine administration. The pencil-lens video-microscope probe was placed over capillaries fed by the left anterior descending artery in atrioventricular-blocked hearts of open-chest, anesthetized dogs paced at 60-90 beats/min (n = 17). In individual capillaries under control conditions, red blood cell flow was predominant during systole or diastole, indicating that the watershed between diastolic arterial and systolic venous flows is located within the capillaries. Capillary flow increased during RH and reached a peak flow velocity (2.1 +/- 0.6 mm/s), twice as high as control (1.2 +/- 0.5 mm/s), with enhancement of intercapillary cross-connection flow and enlargement of diameter (by 17%). With adenosine, capillary flow velocity significantly increased (1.8 +/- 0.7 mm/s). However, the increase in volumetric capillary flow with adenosine estimated from red blood cell velocity and diameter was less than the increase in arterial flow, whereas that during RH was nearly equivalent to the increase in arterial flow. There was a time lag of approximately 1.5 s for refilling of capillaries during RH, indicating their function as capacitance vessels. In conclusion, the coronary capillary network functions as 1) the major watershed between diastolic-dominant arterial and systolic-dominant venous flows, 2) a capacitor, and 3) a significant local flow amplifier and homogenizer of blood supply during RH, but with adenosine the increase in capillary flow velocity was less than the increase in arterial flow.  相似文献   

18.
Continuous monitoring of intrapulse measurement of blood flow in humans is currently not achievable with clinically available instruments. In this paper, we demonstrate a method of measuring the instantaneous variations in flow during pulsatile blood flow with an optical flow sensor comprising a fiber Bragg grating sensor and illumination from a 565 nm Light‐Emitting‐Diode. The LED illumination heats the blood and fluctuations in temperature, due to variations in flow, are detected by the fiber sensor. A set of experiments at different flow rates (20 to 900 mL/min) are performed in a simulated cardiac circulation setup with pulsatile flow. Data are compared with an in‐line time of flight ultrasound flow sensor. Our results show that the optical and ultrasonic signals correlate with Pearson coefficients ranging from ?0.83 to ?0.98, dependent on the pulsatile frequency. Average flow determined by ultrasound and the optical fiber sensor showed a parabolic relationship with R2 = 0.99. An abrupt step change in flow induced by occlusion and release of the circuit tubing demonstrated that the optical fiber and ultrasound sensor had similar response. The method described is capable of intrapulse blood flow measurement under pulsatile flow conditions, with potential applications in medicine where continuous blood flow sensing is desired.  相似文献   

19.
In acute experiments on cats with closed chest by ultrasonic method the authors studied the blood flow in low-lobar pulmonary artery and the vein, the blood pressure in pulmonary artery, lung vessels resistance in experimental pulmonary edema caused by intravenous infusion of mixture fatty acids at artificial ventilation of increased frequencies or volumes, at was shown, that artificial ventilation of increased frequencies in pulmonary edema reduces the pressure increase in pulmonary artery, lung vessels resistance and increases the blood flow in pulmonary artery and vein. Artificial ventilation of increased volumes produces more intense pressure increase in pulmonary artery and lung vessels resistance than in initial ventilation but the blood flow was slightly changed. The authors assume that artificial ventilation of increased frequencies or volumes in pulmonary edema due to pulmonary circulation change reduces the pulmonary edema intensity at the beginning.  相似文献   

20.
Arrest of circulating tumor cells in distant organs is required for hematogenous metastasis, but the tumor cell surface molecules responsible have not been identified. Here, we show that the tumor cell alpha3beta1 integrin makes an important contribution to arrest in the lung and to early colony formation. These analyses indicated that pulmonary arrest does not occur merely due to size restriction, and raised the question of how the tumor cell alpha3beta1 integrin contacts its best-defined ligand, laminin (LN)-5, a basement membrane (BM) component. Further analyses revealed that LN-5 is available to the tumor cell in preexisting patches of exposed BM in the pulmonary vasculature. The early arrest of tumor cells in the pulmonary vasculature through interaction of alpha3beta1 integrin with LN-5 in exposed BM provides both a molecular and a structural basis for cell arrest during pulmonary metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号