首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroautophagy/autophagy is an intracellular stress survival and recycling system whereas phagocytosis internalizes material from the extracellular milieu; yet, both pathways utilize lysosomes for cargo degradation. Whereas autophagy occurs in all cells, phagocytosis is performed by cell types such as macrophages and the retinal pigment epithelial (RPE) cells of the eye where it is supported by the noncanonical autophagy process termed LC3-associated phagocytosis (LAP). Autophagy and LAP are distinct pathways that use many of the same mediators and must compete for cellular resources, suggesting that cells may regulate both processes under homeostatic and stress conditions. Our data reveal that RPE cells promote LAP through the expression of RUBCN/Rubicon (RUN domain and cysteine-rich domain containing Beclin 1-interacting protein) and suppress autophagy through the activation of EGFR (epidermal growth factor receptor). In the morning when photoreceptor outer segments (POS) phagocytosis and LAP are highest, RUBCN expression is increased. At the same time, outer segment phagocytosis activates the EGFR resulting in MTOR (mechanistic target of rapamycin [serine/threonine kinase]) stimulation, the accumulation of SQSTM1/p62, and the phosphorylation of BECN1 (Beclin 1, autophagy related) on an inhibitory residue thereby suppressing autophagy. Silencing Rubcn, preventing EGFR activity or directly inducing autophagy in RPE cells by starvation inhibits phagocytic degradation of POS. Thus, RPE cells regulate lysosomal pathways during the critical period of POS phagocytosis to support retinal homeostasis.  相似文献   

2.
Phagocytosis is a critical process to maintain tissue homeostasis. In the retina, photoreceptor cells renew their photoexcitability by shedding photoreceptor outer segments (POSs) in a diurnal rhythm. Shed POSs are phagocytosed by retinal pigment epithelial (RPE) cells to prevent debris accumulation, retinal degeneration, and blindness. Phagocytosis ligands are the key to understanding how RPE recognizes shed POSs. Here, we characterized mesoderm development candidate 2 (Mesd or Mesdc2), an endoplasmic reticulum (ER) chaperon for low-density lipoprotein receptor-related proteins (LRPs), to extrinsically promote RPE phagocytosis. The results showed that Mesd stimulated phagocytosis of fluorescence-labeled POS vesicles by D407 RPE cells. Ingested POSs were partially degraded within 3 h in some RPE cells to dispense undegradable fluorophore throughout the cytoplasm. Internalized POSs were colocalized with phagosome biomarker Rab7, suggesting that Mesd-mediated engulfment is involved in a phagocytosis pathway. Mesd also facilitated phagocytosis of POSs by primary RPE cells. Mesd bound to unknown phagocytic receptor(s) on RPE cells. Mesd was detected in the cytoplasm, but not nuclei, of different retinal layers and is predominantly expressed in the ER-free cellular compartment of POSs. Mesd was not secreted into medium from healthy cells but passively released from apoptotic cells with increased membrane permeability. Released Mesd selectively bound to the surface of POS vesicles and apoptotic cells, but not healthy cells. These results suggest that Mesd may be released from and bind to shed POSs to facilitate their phagocytic clearance.  相似文献   

3.
Phagocytosis of shed photoreceptor outer segments (POSs) by retinal pigment epithelial (RPE) cells is critical to retinal homeostasis and shares many conserved signaling pathways with other phagocytes, including extrinsic regulations. Phagocytotic ligands are the key to cargo recognition, engulfment initiation, and activity regulation. In this study, we identified intracellular protein ATP-binding cassette subfamily F member 1 (ABCF1) as a novel RPE phagocytotic ligand by a new approach of functional screening. ABCF1 was independently verified to extrinsically promote phagocytosis of shed POSs by D407 RPE cells. This finding was further corroborated with primary RPE cells and RPE explants. Internalized POS vesicles were colocalized with a phagosome marker, suggesting that ABCF1-mediated engulfment is through a phagocytic pathway. ABCF1 was released from apoptotic cells and selectively bound to shed POS vesicles and apoptotic cells, possibly via externalized phosphatidylserine. ABCF1 is predominantly expressed in POSs and colocalized with the POS marker rhodopsin, providing geographical convenience for regulation of RPE phagocytosis. Collectively these results suggest that ABCF1 is released from and binds to shed POSs in an autocrine manner to facilitate RPE phagocytosis through a conserved pathway. Furthermore, the new approach is broadly applicable to many other phagocytes and will enable systematic elucidation of their ligands to understand extrinsic regulation and cargo recognition.  相似文献   

4.
Phagocytosis of apoptotic cells by macrophages and spent photoreceptor outer segments (POS) by retinal pigment epithelial (RPE) cells requires several proteins, including MerTK receptors and associated Gas6 and protein S ligands. In the retina, POS phagocytosis is rhythmic, and MerTK is activated promptly after light onset via the αvβ5 integrin receptor and its ligand MFG-E8, thus generating a phagocytic peak. The phagocytic burst is limited in time, suggesting a down-regulation mechanism that limits its duration. Our previous data showed that MerTK helps control POS binding of integrin receptors at the RPE cell surface as a negative feedback loop. Our present results show that a soluble form of MerTK (sMerTK) is released in the conditioned media of RPE-J cells during phagocytosis and in the interphotoreceptor matrix of the mouse retina during the morning phagocytic peak. In contrast to macrophages, the two cognate MerTK ligands have an opposite effect on phagocytosis and sMerTK release, whereas the integrin ligand MFG-E8 markedly increases both phagocytosis and sMerTK levels. sMerTK acts as a decoy receptor blocking the effect of both MerTK ligands. Interestingly, stimulation of sMerTK release decreases POS binding. Conversely, blocking MerTK cleavage increased mostly POS binding by RPE cells. Therefore, our data suggest that MerTK cleavage contributes to the acute regulation of RPE phagocytosis by limiting POS binding to the cell surface.  相似文献   

5.
Recent studies have suggested that bone marrow-derived mesenchymal stem cells (BMMSCs) are capable of retinal tissue-specific differentiation but not retinal pigment epithelium (RPE) cell-specific differentiation. Photoreceptor outer segments (POS) contribute to RPE development and maturation. However, there has been no standard culture system that fosters the differentiation of BMMSCs into mature RPE cells in vitro. In this study, we investigated if the soluble factors from RPE cells and POS could differentiate BMMSCs into cells having a phenotype characteristic of RPE cells. Rat BMMSCs were separately co-cultured with RPE cells, or they were exposed to either control medium, RPE cell-conditioned medium (RPECM), POS, or a combination of RPECM and POS (RPECM-POS). After 7 days, the cells were analyzed for morphology and the expression of RPE markers (cytokeratin 8, CRALBP, and RPE65) to assess the RPE differentiation. Significantly higher pigment accumulation and increased protein expression of the three markers were seen in cells cultured in RPECM-POS than in other treated cultures. Furthermore, the RPECM-POS-treated cultures displayed ultrastructural features typical of RPE cells, expressed RPE cell functional proteins, and had the capability to phagocytose POS. Together, theses results suggest the combination of RPECM and POS stimulate BMMSCs differentiation toward a functional RPE phenotype. Our results provide the foundation for a new route to RPE regenerative therapy involving BMMSCs. Future work isolating the active agent in RPECM and POS would be useful in therapies for RPE diseases or in developing appropriately pre-differentiated BMMSCs for tissue-engineered RPE reconstruction.  相似文献   

6.
Oxidative stress causes retinal pigment epithelium (RPE) cell dysfunction and is a major risk factor leading to the development of dry-type age-related macular degeneration. Taking pharmacological and genetic approaches, we address the mechanisms by which sublethal oxidative stress inhibits RPE cell phagocytosis. Sublethal oxidative stress dose-dependently inhibited RPE cell phagocytosis of photoreceptor outer segments (POS) and activated AMP-activated protein kinase (AMPK) as determined by increased Thr172 and Ser79 phosphorylation of AMPKalpha and its substrate acetyl-CoA carboxylase, respectively. Similar to oxidative stress, 5-aminoimidazole-4-carboxamide riboside (AICAR), a pharmacological activator of AMPK, inhibited RPE cell phagocytosis of POS in a dose-dependent manner. Inhibition of RPE cell phagocytosis by AICAR was fully reversed by blockade of AICAR translocation into cells by dipyridamole or inhibition of AICAR conversion to ZMP by adenosine kinase inhibitor 5-iodotubercidin. In agreement, AICAR-induced activation of AMPK was abolished by preincubation with dipyridamole or 5-iodotubercidin. Knock-out experiments further revealed that alpha2 but not alpha1 AMPK was involved in RPE cell phagocytosis and that activation of alpha2 AMPK contributed to the inhibition of RPE cell phagocytosis by oxidative stress. Inhibition of RPE cell phagocytosis by activation of alpha2 AMPK was associated with a dramatic increase in acetyl-CoA carboxylase phosphorylation. In comparison, AMPK had no role in oxidative stress-induced breakdown of RPE barrier function. Taken together, reduction in POS load under oxidative stress might direct RPE cells to a self-protected status. Thus, activating AMPK could have therapeutic potential in treating dry macular degeneration.  相似文献   

7.
Cone-rod dystrophy (CRD) is an inherited progressive retinal dystrophy affecting the function of cone and rod photoreceptors. By autozygosity mapping, we identified null mutations in the ADAM metallopeptidase domain 9 (ADAM9) gene in four consanguineous families with recessively inherited early-onset CRD. We also found reduced photoreceptor responses in Adam9 knockout mice, previously reported to be asymptomatic. In 12-month-old knockout mice, photoreceptors appear normal, but the apical processes of the retinal pigment epithelium (RPE) cells are disorganized and contact between photoreceptor outer segments (POSs) and the RPE apical surface is compromised. In 20-month-old mice, there is clear evidence of progressive retinal degeneration with disorganized POS and thinning of the outer nuclear layer (ONL) in addition to the anomaly at the POS-RPE junction. RPE basal deposits and macrophages were also apparent in older mice. These findings therefore not only identify ADAM9 as a CRD gene but also identify a form of pathology wherein retinal disease first manifests at the POS-RPE junction.  相似文献   

8.
Oxidative stress is a main factor responsible for key changes leading to the onset of age-related macular degeneration (ARMD) that occur in the retinal pigment epithelium (RPE), which is involved in phagocytosis of photoreceptor outer segments (POS). In this study, hydrogen peroxide (H2O2), H2O2 and iron ions (Fe) or rose Bengal (RB) in the presence of NADH and Fe were used to model free radical mediated oxidative stress to test if free radicals and singlet oxygen have different efficiency to inhibit phagocytosis of ARPE-19 cells. Free radical mediated oxidative stress was confirmed by HPLC-EC(Hg) measurements of cholesterol hydroperoxides in treated cells. Electron paramagnetic resonance (EPR) spin trapping was employed to detect superoxide anion. Cell survival was analyzed by the MTT assay. Specific phagocytosis of fluorescein-5-isothiocyanate-labeled POS and non-specific phagocytosis of fluorescent beads were measured by flow cytometry. HPLC analysis of cells photosensitized with RB in the presence of NADH and Fe indicated substantial increase in formation of free radical-dependent 7α/7β-hydroperoxides. EPR spin trapping confirmed the photogeneration of superoxide anion in samples enriched with RB, NADH and Fe. For all three protocols sub-lethal oxidative stress induced significant inhibition of the specific phagocytosis of POS. In contrast, non-specific phagocytosis was inhibited only by H2O2 or H2O2 and Fe treatment. Inhibition of phagocytosis was transient and recoverable by 24?h. These results suggest that free radicals may exert similar to singlet oxygen efficiency in inhibiting phagocytosis of RPE cells, and that the effect depends on the location where initial reactive species are formed.  相似文献   

9.
The daily phagocytosis of shed photoreceptor outer segments by pigment epithelial cells is critical for the maintenance of the retina. In a subtractive polymerase chain reaction analysis, we found that functional differentiation of human ARPE19 retinal pigment epithelial (RPE) cells is accompanied by up-regulation of annexin (anx) A2, a major Src substrate and regulator of membrane–cytoskeleton dynamics. Here, we show that anx A2 is recruited to the nascent phagocytic cup in vitro and in vivo and that it fully dissociates once the phagosome is internalized. In ARPE19 cells depleted of anx A2 by using small interfering RNA and in ANX A2−/− mice the phagocytosis of outer segments was impaired, and in ANX A2−/− mice there was an accumulation of phagocytosed outer segments in the RPE apical processes, indicative of retarded phagosome transport. We show that anx A2 is tyrosine phosphorylated at the onset of phagocytosis and that the synchronized activation of focal adhesion kinase and c-Src is abnormal in ANX A2−/− mice. These findings reveal that anx A2 is involved in the circadian regulation of outer segment phagocytosis, and they provide new insight into the protein machinery that regulates phagocytic function in RPE cells.  相似文献   

10.
Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Dysfunction or death of RPE cells underlies many age‐related retinal degenerative disorders particularly age‐related macular degeneration. During aging RPE cells decline in number, suggesting an age‐dependent cell loss. RPE cells are considered to be postmitotic, and how they repair damage during aging remains poorly defined. We show that RPE cells increase in size and become multinucleate during aging in C57BL/6J mice. Multinucleation appeared not to be due to cell fusion, but to incomplete cell division, that is failure of cytokinesis. Interestingly, the phagocytic activity of multinucleate RPE cells was not different from that of mononuclear RPE cells. Furthermore, exposure of RPE cells in vitro to photoreceptor outer segment (POS), particularly oxidized POS, dose‐dependently promoted multinucleation and suppressed cell proliferation. Both failure of cytokinesis and suppression of proliferation required contact with POS. Exposure to POS also induced reactive oxygen species and DNA oxidation in RPE cells. We propose that RPE cells have the potential to proliferate in vivo and to repair defects in the monolayer. We further propose that the conventionally accepted ‘postmitotic’ status of RPE cells is due to a modified form of contact inhibition mediated by POS and that RPE cells are released from this state when contact with POS is lost. This is seen in long‐standing rhegmatogenous retinal detachment as overtly proliferating RPE cells (proliferative vitreoretinopathy) and more subtly as multinucleation during normal aging. Age‐related oxidative stress may promote failure of cytokinesis and multinucleation in RPE cells.  相似文献   

11.
The RCS rat is a widely studied model of recessively inherited retinal degeneration. The genetic defect, known as rdy (retinal dystrophy), results in failure of the retinal pigment epithelium (RPE) to phagocytize shed photoreceptor outer segment membranes. We previously used positional cloning and in vivo genetic complementation to demonstrate that Mertk is the gene for rdy. We have now used a rat primary RPE cell culture system to demonstrate that the RPE is the site of action of Mertk and to obtain functional evidence for a key role of Mertk in RPE phagocytosis. We found that Mertk protein is absent from RCS, but not wild-type, tissues and cultured RPE cells. Delivery of rat Mertk to cultured RCS RPE cells by means of a recombinant adenovirus restored the cells to complete phagocytic competency. Infected RCS RPE cells ingested exogenous outer segments to the same extent as wild-type RPE cells, but outer segment binding was unaffected. Mertk protein progressively co-localized with outer segment material during phagocytosis by primary RPE cells, and activated Mertk accumulated during the early stages of phagocytosis by RPE-J cells. We conclude that Mertk likely functions directly in the RPE phagocytic process as a signaling molecule triggering outer segment ingestion.  相似文献   

12.
13.
Alteration in retinal pigment epithelium (RPE) results in the visual dysfunction and blindness of retinal degenerative diseases. Injection of sodium iodate (NaIO3) generates degeneration of RPE. We analyzed the sequential ultrastructure and expression of proliferating cell nuclear antigen (PCNA) and retina-specific RPE65 in NaIO3-induced retinal degeneration model. Adult male rats were injected 1% NaIO3 (50 mg/kg) and eyes were enucleated at 1, 3, 5, 7 and 14 days post-injection (DPI), fixed, and processed for histological analysis. NaIO3-induced retinal degeneration was successfully established. At 1 DPI, most RPE cells were degenerated and replaced by a few proliferating RPE cells in the peripheral area. At 3 DPI, the RPE and photoreceptor out segments (POS) underwent a marked morphological change, including POS disruption, accumulation of residual bodies in RPE and POS, and hyperplasia of the RPE cell. At 5 DPI, POS showed a maximum increase in the outer segment debris and the retina showed partial detachment. These abnormal morphological changes gradually decreased by day 7. At 14 DPI, the damaged RPE and POS were partially regenerated from the peripheral to the central region. Expression of PCNA and RPE65 increased from day 3 onward. The damaged RPE showed earlier expression of PCNA and RPE65 than POS. The RPE damaged by NaIO3 rapidly proliferated to put down roots on Bruch’s membrane from the peripheral retina and proliferation and hyperplasia of the RPE had a regular direction of progress. Therefore, NaIO3-induced acute changes in retina mimic the patho-morphologic features of RPE-related diseases.  相似文献   

14.
Inherited photoreceptor degenerations (IPDs) are the most genetically heterogeneous of Mendelian diseases. Many IPDs exhibit substantial phenotypic variability, but the basis is usually unknown. Mutations in MERTK cause recessive IPD phenotypes associated with the RP38 locus. We have identified a murine genetic modifier of Mertk-associated photoreceptor degeneration, the C57BL/6 (B6) allele of which acts as a suppressor. Photoreceptors degenerate rapidly in Mertk-deficient animals homozygous for the 129P2/Ola (129) modifier allele, whereas animals heterozygous for B6 and 129 modifier alleles exhibit an unusual intermixing of degenerating and preserved retinal regions, with females more severely affected than males. Mertk-deficient mice homozygous for the B6 modifier allele display degeneration only in the far periphery, even at 8 months of age, and have improved retinal function compared to animals homozygous for the 129 allele. We genetically mapped the modifier to an approximately 2-megabase critical interval that includes Tyro3, a paralog of Mertk. Tyro3 expression in the outer retina varies with modifier genotype in a manner characteristic of a cis-acting expression quantitative trait locus (eQTL), with the B6 allele conferring an approximately three-fold higher expression level. Loss of Tyro3 function accelerates the pace of photoreceptor degeneration in Mertk knockout mice, and TYRO3 protein is more abundant in the retinal pigment epithelium (RPE) adjacent to preserved central retinal regions of Mertk knockout mice homozygous for the B6 modifier allele. Endogenous human TYRO3 protein co-localizes with nascent photoreceptor outer segment (POS) phagosomes in a primary RPE cell culture assay, and expression of murine Tyro3 in cultured cells stimulates phagocytic ingestion of POS. Our findings demonstrate that Tyro3 gene dosage modulates Mertk-associated retinal degeneration, provide strong evidence for a direct role for TYRO3 in RPE phagocytosis, and suggest that an eQTL can modify a recessive IPD.  相似文献   

15.
16.
To better understand if a complex process such as phagocytosis is influenced by substrate stiffness, we investigated the influence of substrate elastic modulus on phagocytosis in the retinal pigment epithelial (RPE) cell line ARPE-19. RPE cells lie on Bruch?s membrane, directly under the retina, and phagocytose the shed photoreceptor outer segments. Bruch?s membrane is known to increase in stiffness by an order of magnitude with age and thus, this study has potential relevance in explaining retinal changes in age-related macular degeneration.  相似文献   

17.
《Cellular signalling》2014,26(5):968-978
Phagocytosis of shed photoreceptor outer segments by the retinal pigment epithelium (RPE) is critical for maintenance of visual function. Because changes in intracellular Ca2 + regulate phagocytosis, we studied in vitro the impact of different ion channels in addition to mice deficient for Cav1.3 L-type Ca2+ channels (Ca1.3−/−) and maxiK Ca2+-dependent K+ channels (BK−/−). The knockdown of Bestrophin-1 protein, a regulator of intracellular Ca2+ homeostasis, affected phagocytosis in porcine RPE cultures. Blockage of voltage-gated L-type channels by (+)BayK8644 inhibitor reduced phagocytosis in vitro, in contrast L-type activation by (−)BayK8644 had no impact. The expression rate of Cav1.3, the predominant L-type Ca2 + channel in RPE cells, varied at different times of day. CaV1.3−/− RPE lacked peak phagocytic activity following morning photoreceptor shedding in wild-type RPE and retained a higher number of phagosomes at a later time of day. The BK-channel blocker paxilline lowered phagocytosis in RPE cultures in a concentration-dependent manner. BK−/− RPE in vivo retained phagocytic capability but this activity, which is normally well synchronized with circadian photoreceptor shedding, shifted out of phase. Retinae of older BK−/− mice showed shortened photoreceptor outer segments and diminished rhodopsin content. Store-operated Ca2 + channels Orai-1 did not affect phagocytosis in cultured RPE. TRPV channel inhibition by ruthenium-red reduced phagocytosis, whereas activation at high concentrations of 2-APB increased phagocytosis. Our data demonstrate essential roles for bestrophin-1, BK, TRPV and L-type channels in regulating retinal phagocytosis. These data indicate further the importance of BK and CaV1.3 for rhythmic phagocytic activity synchronized with photoreceptor shedding.  相似文献   

18.
The retinal pigment epithelial (RPE) cell of the eye normally phagocytozes only retinal rod outer segments (ROS). The specificity of this phagocytic process was examined by incubating RPE cells with a variety of particle types. Confluent RPE cell cultures were incubated for 3 h at 37 degrees C in the presence of rat ROS, rat red blood cells (RBC), algae, bacteria, or yeast. Other cell cultures were incubated with equal numbers of ROS and one other particle type. Quantitative scanning electron microscopy was used to determine the numbers and morphology of particles bound to RPE cells, while double immunofluorescence labeling (Chaitin, M. H., and M. O. Hall, 1983, Invest. Ophthalmol. Vis. Sci., 24:812-820) was used to quantitate particle binding and ingestion. Both assays demonstrated phagocytosis to be a highly specific process. RPE cells bound 40-250 X more ROS than RBC, 30 X more ROS than algae, and 5 X more ROS than bacteria or yeast. Ingestion was more specific than binding; RPE cells ingested 970 X more ROS than RBC, 140 X more ROS than bacteria, and 35 X more ROS than yeast. The phagocytic preference for ROS was maintained in competition experiments with other particle types. Serum was found to be essential for phagocytosis. This study demonstrates that both the binding and ingestion phases of phagocytosis are highly specific processes.  相似文献   

19.
Phagocytosis of photoreceptor outer segments (OS) by retinal pigment epithelium (RPE) is essential for OS renewal and survival of photoreceptors. Internalized, oxidatively modified macromolecules perturb the lysosomal function of the RPE and can lead to impaired processing of photoreceptor outer segments. In this study, we sought to investigate the impact of intracellular accumulation of oxidatively damaged lipid-protein complexes on maturation and distribution of cathepsin D, the major lysosomal protease in the RPE. Primary cultures of human RPE cells were treated with copper-oxidized low density lipoprotein (LDL) and then challenged with serum-coated latex beads to stimulate phagocytosis. Three observations were noted to occur in this experimental system. First, immature forms of cathepsin D (52 and 46 kDa) were exclusively associated with latex-containing phagosomes. Second, maturation of cathepsin D was severely impaired in RPE cells loaded with oxidized LDL (oxLDL) prior to the phagocytic challenge. Third, pre-treatment with oxLDL caused sustained secretion of pro-cathepsin D and the latent form of gelatinase A into the extracellular space in a dose-dependent manner. These data stimulate the hypothesis that intracellular accumulation of poorly degradable, oxidized lipid-protein cross-links, may alter the turnover of cathepsin D, causing its mistargeting into the extracellular space together with the enhanced secretion of a gelatinase.  相似文献   

20.
The ferrous ions released from haemoglobin and storage-transferrin ions cause oxidative stress in the eyes. We observed the phagocytotic process of the photoreceptor outer segment discs peroxidized by ferrous ions in the retinal pigment epithelial (RPE) cells in vitro, and investigated how the ferrous ions influenced RPE in vitro and the photoreceptor outer segment discs. We obtained isolated photoreceptor outer segment discs using sucrose gradient of specific gravity after homogenizing porcine retinas. After bovine RPE cells were cultured with isolated photoreceptor outer segment discs containing FeCl2 for 5 and 24 h, we incubated the specimens with rhodamine phalloidin, antimouse alpha-tubulin antibody and antimouse Ig G (FITC and rhodamine labelled). We observed the specimens by a laser scanning microscopy, and made the ultrathin sections with or without 2% uranyl acetate and 2% lead acetate for examination by transmission electron microscopy. Actin filaments and microtubules of specialized cells such as RPE cells were actively involved in phagocytosis of the photoreceptor outer segment discs. Microtubules were damaged during the phagocytotic process of the photoreceptor outer segment discs peroxidized by ferrous ions. The peroxidation increased the granular and aggregated autofluorescence of the photoreceptor outer segment discs. The membranes of the disc and the phagosomes, and lysosomes in RPE cells were damaged by ferrous ions and had fine particles with high electron density staining without uranium acetate and lead citrate. The cytoskeletons such as actin filaments and microtubules, and the membranes of the phagosomes and the lysosomes in RPE cells in vitro were damaged during the phagocytotic process of the photoreceptor outer segment discs peroxidized by ferrous ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号