首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using light and electron microscopy, the early stages of root hair initiation were investigated under control conditions and in a situation where F-actin polymerization was effectively inhibited by latrunculin B. Trichoblasts in their early stage of bulge formation possessed large vacuole traversed by cytoplasmic strands and enclosed within a narrow peripheral layer of cytoplasm. The nucleus was settled at the inner periclinal cell wall, typically opposite the site of bulge formation. Within the bulging area, dense cytoplasm and numerous ER elements, and other organelles were accumulated, together with pleiomorphic membrane-bound structures, the identity and nature of which will require further studies. These unusual structures, which were associated with the outer cell wall, contained material similar to that of the cell wall. Similar cell wall-like bodies were observed also in the cytoplasm and sometimes within vacuoles. The possible role of these novel organelles of plant cells in cell wall thinning/degradation or in the turgor pressure maintenance are discussed. Latrunculin B treatment allowed bulge formation but prevented the switch from the slow and diffuse expansion of bulge into the rapid tip-growth characteristic of the emerging root hair. Moreover, the cytoplasm of the bulging domain became extensively vacuolated and lacked abundant ER elements and other organelles including the membrane-bound structures. These results indicate important roles of F-actin in the switch from diffuse to highly polarized tip growth.  相似文献   

2.
The outer membrane of Gram‐negative bacteria is a crucial permeability barrier allowing the cells to survive a myriad of toxic compounds, including many antibiotics. This innate form of antibiotic resistance is compounded by the evolution of more active mechanisms of resistance such as efflux pumps, reducing the already limited number of clinically relevant treatments for Gram‐negative pathogens. During cell division Gram‐negative bacteria must coordinate constriction of the outer membrane in conjunction with other crucial layers of the cell envelope, the peptidoglycan cell wall and the inner membrane. Coordination is crucial in maintaining structural integrity of the envelope, and represents a highly vulnerable time for the cell as any failure can be fatal, if not least disadvantageous. However, the molecular mechanisms of cell division and how the biogenesis of the three layers is synchronised during constriction remain largely unknown. Perturbations of the outer membrane have been shown to increase the effectiveness of antibiotics in vitro, and so with improved understanding of this process we may be able to exploit this vulnerability and improve the effectiveness of antibiotic treatments. In this review the current knowledge of how Gram‐negative bacteria facilitate constriction of their outer membranes during cell division will be discussed.  相似文献   

3.
The amino acid double labeling technique was used to identify and localize membrane-bound lactose operon proteins in E.coli. Both the “M” protein, thought to be the y gene product, and a polypeptide of MW ~15,000 appeared in the membrane following lac operon induction. The amounts of these two proteins were approximately equal.The inner and outer membrane layers of the cell envelope were separated by sucrose density gradient centrifugation or by selective solubilization of inner membranes with the detergent Sarkosyl. When gentle lysis conditions were employed to prepare membrane vesicles, both lac induced proteins fractionated with the inner membrane. However, the “M” protein was more easily randomized in the envelope structure by sonication than the 15,000 dalton component or an inner membrane marker enzyme.  相似文献   

4.
The aim of this work was to identify the initial binding sites to the bacterial membranes of the antimicrobial peptide αs2-casein f(183-207) and also to acquire further insight into membrane permeabilization of this peptide. Furthermore, cell morphology was studied by transmission electron microscopy. In all the experiments, bovine LFcin was employed as a comparison. Results showed that initial binding sites of αs2-casein f(183-207) peptide were lipoteichoic acid in Gram-positive bacteria and lipopolysaccharide in Gram-negative. The peptide was able to permeabilize the outer and inner membranes. Moreover, the αs2-casein peptide f(183-207) generated pores in the outer membrane of Gram-negative bacteria and in the cell wall of Gram-positive bacteria. In the Gram-negative bacteria, f(183-207) originated cytoplasm condensation, and in the Gram-positive bacteria the cytoplasmic content leaked into the extracellular medium. Furthermore, the experiments of inner and outer membrane permeabilization performed with LFcin-B showed that this peptide also has the ability to permeabilize both the inner and outer membranes.  相似文献   

5.
The cell envelope in Gram-negative bacteria comprises two distinct membranes with a cell wall between them. There has been a growing interest in understanding the mechanical adaptation of this cell envelope to the osmotic pressure (or turgor pressure), which is generated by the difference in the concentration of solutes between the cytoplasm and the external environment. However, it remains unexplored how the cell wall, the inner membrane (IM), and the outer membrane (OM) effectively protect the cell from this pressure by bearing the resulting surface tension, thus preventing the formation of inner membrane bulges, abnormal cell morphology, spheroplasts and cell lysis. In this study, we have used molecular dynamics (MD) simulations combined with experiments to resolve how and to what extent models of the IM, OM, and cell wall respond to changes in surface tension. We calculated the area compressibility modulus of all three components in simulations from tension-area isotherms. Experiments on monolayers mimicking individual leaflets of the IM and OM were also used to characterize their compressibility. While the membranes become softer as they expand, the cell wall exhibits significant strain stiffening at moderate to high tensions. We integrate these results into a model of the cell envelope in which the OM and cell wall share the tension at low turgor pressure (0.3 atm) but the tension in the cell wall dominates at high values (>1 atm).  相似文献   

6.
The kinetics of loss from the cytoplasm and changes in ultrastructure of symbiont lambda particles after treatment of axenically cultivated lambda-bearing Paramecium aurelia with penicillin G was investigated. Low concentrations (1 to 2 unit/ml) of the antibiotic caused many particles within the cell to become filamentous; high concentrations (2,000 unit/ml) caused lysis of the particles without noticeably affecting the protozoan. The ED(50) value (2 to 3 unit/ml) was within the range of values found to cause lysis of many gram-negative bacteria. Rapidly dividing lambda were more vulnerable to the action of the antibiotic than slowly dividing particles. Nondividing particles were not affected by exposure to the antibiotic. Ultrastructural changes observed in lambda during lysis by penicillin G were consistent with the view that penicillin interferes with the synthesis of a vital component of the cell envelope of the particle, possibly a peptidoglycan similar to that found in the cell walls of bacteria. The deoxyribonucleic acid of lambda was dispersed throughout the particle as electron dense fibers enclosed within electron transparent areas. The cell envelope appeared to consist of at least two morphologically distinguishable layers, an inner layer homologous to the plasma membrane of bacteria and an outer layer homologous to the bacterial cell wall. Lambda may be regarded as a randomly distributed population of bacteria growing and dividing synchronously within the collective cytoplasm of its protozoan host.  相似文献   

7.
The aim of this work was to identify the initial binding sites to the bacterial membranes of the antimicrobial peptide alphas2-casein f(183-207) and also to acquire further insight into membrane permeabilization of this peptide. Furthermore, cell morphology was studied by transmission electron microscopy. In all the experiments, bovine LFcin was employed as a comparison. Results showed that initial binding sites of alphas2-casein f(183-207) peptide were lipoteichoic acid in Gram-positive bacteria and lipopolysaccharide in Gram-negative. The peptide was able to permeabilize the outer and inner membranes. Moreover, the alphas2-casein peptide f(183-207) generated pores in the outer membrane of Gram-negative bacteria and in the cell wall of Gram-positive bacteria. In the Gram-negative bacteria, f(183-207) originated cytoplasm condensation, and in the Gram-positive bacteria the cytoplasmic content leaked into the extracellular medium. Furthermore, the experiments of inner and outer membrane permeabilization performed with LFcin-B showed that this peptide also has the ability to permeabilize both the inner and outer membranes.  相似文献   

8.
Ultrastructural studies of sporulation in Bacillus sphaericus.   总被引:5,自引:12,他引:5       下载免费PDF全文
Spore septum formation in Bacillus sphaericus 9602 occurs 2 h after the end of exponential growth at one end of the vegetative cell, which retains a uniform diameter. The apparently rigid spore septum contains an inner cell wall layer which disappears when the sporulation septum "bulges" into the mother cell cytoplasm. This process occurs simultaneously with terminal swelling at the end of the cell containing the spore septum. It is suggested that the inner cell wall layer is peptidoglycan and that its dissolution and the terminal swelling are consequences of a localized autolysis. Engulfment of the forespore by membrane proliferation results in the production of a forespore surrounded by two flexible, closely apposed membranes. These membranes appear to become more rigid as a peptidoglycan-like layer appears between them, concomitant with the condensation of the forespore nucleoid into a crescent-shaped structure. After nuclear condensation, visible development of distinct cortex, primordial cell wall, and spore coat layers begin, and the forespore cytoplasm assumes an appearance similar to that of a refractile spore. The spore coats consist of an amorphous inner layer, a lamellar midlayer, and a structured outer layer. As cortex synthesis and spore coat assembly continue, exosporium development commences close to that portion of the mother cell plasma membrane which surrounds the forespore. The exosporium is lamellar and in tangential section is seen to have a hexagonal arrangement of subunits. The timing of these morphological events has the expected correlation with the appearance of unique enzyme activites required for cortex synthesis.  相似文献   

9.
Antimicrobial peptides are small, cationic proteins that can induce lysis of bacterial cells through interaction with their membranes. Different mechanisms for cell lysis have been proposed, but these models tend to neglect the role of the chemical composition of the membrane, which differs between bacterial species and can be heterogeneous even within a single cell. Moreover, the cell envelope of Gram-negative bacteria such as E. coli contains two membranes with differing compositions. To this end, we report the first molecular dynamics simulation study of the interaction of the antimicrobial peptide, polymyxin B1 with complex models of both the inner and outer membranes of E. coli. The results of >16 microseconds of simulation predict that polymyxin B1 is likely to interact with the membranes via distinct mechanisms. The lipopeptides aggregate in the lipopolysaccharide headgroup region of the outer membrane with limited tendency for insertion within the lipid A tails. In contrast, the lipopeptides readily insert into the inner membrane core, and the concomitant increased hydration may be responsible for bilayer destabilization and antimicrobial function. Given the urgent need to develop novel, potent antibiotics, the results presented here reveal key mechanistic details that may be exploited for future rational drug development.  相似文献   

10.
The effects of hen egg white lysozyme and the inorganic salt sodium thiocyanate on the integrity of Streptococcus mutans BHT were studied by transmission electron microscopy. Both control cells and cells exposed to NaSCN possessed thick outer cell walls and densely staining inner cell walls juxtaposed to the plasma membranes. In the presence of NaSCN, however, the S. mutans BHT nucleoid was coagulated into thick electron-dense filaments. Exposure of S. mutans BHT to 150 μg of hen egg white lysozyme per ml resulted in the progressive destruction of both the cell walls and the plasma membranes. The enzyme appeared to affect the region of the cell wall septum, and exposure to 150 μg of hen egg white lysozyme per ml for as short a time as 10 min resulted in visible morphological cell wall alterations. At 30 min, ultrastructural observations revealed that the majority of the cells were in the process of expelling a portion of their cytoplasmic contents from the septal and other regions of the cells at the time of fixation. After 3 h of incubation in the presence of this high lysozyme concentration, gelled protoplasmic masses, which were free from the cells, were evident. In addition, extensive damage to the outer and inner cell walls and to the plasma membranes was apparent, although the cells maintained their shape. On some areas of the cell surface, the outer cell wall and plasma membrane were completely absent, whereas at other locations the outer cell wall was either split away from the inner cell wall and plasma membrane or distended from an area free of inner cell wall and plasma membrane. Upon addition of NaSCN to the hen egg white lysozyme-treated cells, both the gelled protoplasmic masses and the damaged cells exhibited an exploded appearance and existed as membrane ghosts, cell wall fragments, or dense aggregates of cytoplasmic components. The effects of a low lysozyme concentration (22.5 μg/ml) on S. mutans morphology were less pronounced at short incubation times (i.e., 10 and 30 min) than those that were observed with a high enzyme concentration; however, breaks in the cell walls and dissolution of the plasma membranes with resulting cell lysis were visible after a prolonged (3-h) incubation and after subsequent addition of NaSCN.  相似文献   

11.
Phospholipid analysis of the membranes associated with fast sedimenting folded chromosomes prepared by lysis of E. coli CR 34 shows that both inner and outer membranes are parts of the complex, in proportions not very different from that found in the whole bacteria.During the preparation of the folded chromosomes, the most recently synthesized molecules of phosphatidylglycerol and phosphatidylethanoamine are more sensitive to solubilisation, particularly those from the cytoplasmic membrane. Identification of a dominant fraction, the outer membrane, in some complexes, results from a preferential solubilization of the inner membrane.These results do not favor any specific association between the folded chromosome and the membranes.  相似文献   

12.
C Lacombe  B Lubochinsky 《Biochimie》1977,59(11-12):877-884
Phospholipid analysis of the membranes associated with fast sedimenting folded chromosomes prepared by lysis of E. coli CR 34 shows that both inner and outer membranes are parts of the complex, in proportions not very different from that found in the whole bacteria. During the preparation of the folded chromosomes, the most recently synthesized molecules of phosphatidylglycerol and phosphatidylethanoamine are more sensitive to solubilisation, particularly those from the cytoplasmic membrane. Identification of a dominant fraction, the outer membrane, in some complexes, results from a preferential solubilization of the inner membrane. These results do not favor any specific association between the folded chromosome and the membranes.  相似文献   

13.
Multidrug resistance mechanisms: drug efflux across two membranes   总被引:25,自引:0,他引:25  
A set of multidrug efflux systems enables Gram-negative bacteria to survive in a hostile environment. This review focuses on the structural features and the mechanism of major efflux pumps of Gram-negative bacteria, which expel from the cells a remarkably broad range of antimicrobial compounds and produce the characteristic intrinsic resistance of these bacteria to antibiotics, detergents, dyes and organic solvents. Each efflux pump consists of three components: the inner membrane transporter, the outer membrane channel and the periplasmic lipoprotein. Similar to the multidrug transporters from eukaryotic cells and Gram-positive bacteria, the inner membrane transporters from Gram-negative bacteria recognize and expel their substrates often from within the phospholipid bilayer. This efflux occurs without drug accumulation in the periplasm, implying that substrates are pumped out across the two membranes directly into the medium. Recent data suggest that the molecular mechanism of the drug extrusion across a two-membrane envelope of Gram-negative bacteria may involve the formation of the membrane adhesion sites between the inner and the outer membranes. The periplasmic components of these pumps are proposed to cause a close membrane apposition as the complexes are assembled for the transport.  相似文献   

14.
On the origin of membrane vesicles in Gram-negative bacteria   总被引:8,自引:0,他引:8  
It is proposed that the genesis of extracellular membrane vesicles in Gram-negative bacteria is a result of cell wall turnover. Peptidoglycan turnover would cause a turgor on the outer membrane, causing the outer membrane to bulge and finally bleb. Mechanical motion would then shear the blebs into the culture medium.  相似文献   

15.
Protein compositions of the inner and outer membranes of Escherichia coli K-12 have been analyzed by two-dimensional gel electrophoresis in which proteins are separated according to apparent isoelectric point (first dimension) and to apparent molecular weight (second dimension). Membrane proteins except for a pair of major outer membrane proteins (proteins Ia and Ib) were found to be solubilized effectively by lysis buffer containing urea, Triton X-100, ampholines and 2-mercaptoethanol. The latter two proteins could be solubilized after precipitation of membrane fraction with trichloroacetic acid; they formed a pair of spots at an acidic region on the electropherogram. Another major protein of the outer membrane, protein II, was also identified. Most of the inner and outer membrane proteins were shown to be focused at a pH range between 4 and 6.5. Specific protein patterns characteristic for both the inner and outer membranes could thous be visualized by the present system. At least 120 and 50 protein species were detected for the inner and outer membranes, respectively.  相似文献   

16.
ΦX174 lysis protein E-mediated lysis of Escherichia coli is characterized by a protein E-specific fusion of the inner and outer membrane and formation of a transmembrane tunnel structure. In order to understand the fusion process, the topology of protein E within the envelope complex of E. coli was investigated. Proteinase K protection studies showed that, during the time course of protein E-mediated lysis process, more of the fusion protein E-FXa-streptavidin gradually became accessible to the protease at the cell surface. These observations postulate a conformational change in protein E during induction of the lysis process by movement of the C-terminal end of the protein throughout the envelope complex from the inner side to the outer side spanning the entire pore and fusing the inner and outer membranes at distinct areas. The initiation mechanism for such a conformational change could be the cis–trans isomerization of proline residues within α-helical membrane-spanning segments. Conversion of proline 21, presumed to be in the membrane-embedded α-helix of protein E, to alanine, glycine, serine and valine, respectively, resulted in lysis-negative E mutant proteins. Proteinase K accessibility studies using streptavidin as a reporter fused to the P21G mutant protein showed that the C-terminal part of the fusion protein is not translocated to the outer side of the membrane, suggesting that this proline residue is essential for the correct folding of protein E within the cell wall complex of E. coli . Oligomerization of protein P21G-StrpA was not disturbed.  相似文献   

17.
We compared several rapid techniques used for extraction of outer membrane proteins from gram-negative enteric bacteria to Haemophilus influenzae type b. After lysis of cells with a French press, the inner and outer membranes were separated by isopycnic centrifugation. Each membrane was identified by density, morphology, enzymatic activity, and susceptibility to solid-phase iodination of intact cells. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, we identified 10 polypeptides which were enriched in the outer membrane band compared to the inner membrane band. Using these proteins, we compared the polypeptide pattern of outer membranes with that obtained by (1) selective solubilization with sodium dodecyl-beta-D-maltoside, octyl-beta-D-glucopyranoside, Triton X-100, sodium, or cholamidopropyl dimethylaminopropanesulfonate; (2) extraction with chaotropic agents and heat; and (3) differential centrifugation of vesicles shed during transition from log growth phase to stationary growth phase. There were definable differences between the polypeptide pattern of membranes obtained with each rapid technique compared to the polypeptide pattern of isolated outer membranes. The polypeptide pattern of lithium extracts and the Triton X-100 insoluble fractions of total membranes most closely approximated the polypeptide pattern of isopycnically isolated outer membranes. Depending on the outer membrane protein sought, one of these rapid techniques can be utilized when a rapid method of outer membrane protein isolation is required.  相似文献   

18.
The application of the theory of homeomorphic transformations of topological manifolds and the operation of the connected sum of manifolds for a formation of a topological model of membrane transformations during the division process of cellular and subcellular compartments, has been shown. The biological cell and the subcellular structures in the form of vesicles are modelled by an arrangement of two concentric spheres corresponding to the inner and outer layer of the membrane bounding the vesicle. The analysis shows eight succeeding topological stages of membrane transformations during the division process and these stages are characterised. It is concluded that there is a vectorial translocation of lipid molecules from the inner layer of the membrane bounding the vesicle before the division process to the outer layer of the membranes after the division process and there is no lipid translocation from the outer layer to the inner layers during the division process.  相似文献   

19.
A single-layered disc of peripheral pronged cells and central prongless cells impart the typical gear shape to colonies of Pediastrum, while the walls of each cell have a characteristic reticulate triangular pattern. The two-layered wall forms in the cells during colony formation following zoospore aggregation and adhesion. The uniformly thin outer layer reflects contours resulting from differential thickening in the reticulate pattern of the inner, thicker, more fibrillar and granular wall layer. The reticulate pattern thus imparted to the outer wall layer persists in empty zoosporangia following the release of zoospores. Columns of electron-dense material extend through the outer wall layer except at the ridges and centers of the reticulum. Following mitosis and cleavage, the resulting zoospores are extruded within a vesicle membrane consisting of the inner wall layer. Separation of this membrane from the parent cell occurs in material of the inner layer adjacent to the outer wall. Vesicles containing swarming zoospores also contain a granular material which appears to become associated with the aggregating and adhering cells of new colonies. Microtubules occur in zoospores prior to adherence but are absent during wall deposition.  相似文献   

20.
Ultrastructure was investigated along the files of developing epidermal cells in the root tip of a model plant Medicago sativa, in which all rhizodermal cells are potential hair-forming trichoblasts. Differentiation at subcellular level was observed up to the stage of bulge initiation in the trichoblasts. Root hair initiation indicated by the emergence of bulges from trichoblasts was detected at various distances from the root tip and, it was independent of the trichoblast size. During rhizodermal cell differentiation, starch grains accumulated in the plastids. Nuclei located in the central part of the young, meristematic cells moved towards the inner periclinal wall as the central vacuole enlarged. The bulging region of the trichoblasts located opposite the nucleus and was rich in mitochondria, ER, ribosomes, and Golgi bodies, and contained also vesicles enclosing fibrillar material. This material responded positively to phosphotungstic acid, which was used for detection of cell wall polysaccharides. The cell wall thickness within the bulging domain was significantly lower than in other parts of trichoblasts. We suggest that internalization of cell wall polysaccharides occurs within the bulging area, contributing to local thinning of the cell wall and providing a source of osmotically active compounds for maintaining turgor in the trichoblast. Thus, the internalization process might be necessary for root hair outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号