首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extremely low-frequency magnetic fields (ELF-MFs) may affect human health because of the possible associations with leukemia but also with cancer, cardiovascular, and neurological disorders. In the present work, human SH-SY5Y neuroblastoma cells were exposed to a 50 Hz, 1 mT sinusoidal ELF-MF at three different times, that is, 5 days (T5), 10 days (T10), and 15 days (T15) and then the effects of ELF-MF on proteome expression and biological behavior were investigated. Through comparative analysis between treated and control samples, we analyzed the proteome changes induced by ELF-MF exposure. Nine new proteins resolved in sample after a 15-day treatment were involved in a cellular defense mechanism and/or in cellular organization and proliferation such as peroxiredoxin isoenzymes (2, 3, and 6), 3-mercaptopyruvate sulfurtransferase, actin cytoplasmatic 2, t-complex protein subunit beta, ropporin-1A, and profilin-2 and spindlin-1. Our results indicated that ELF-MFs exposure altered the proliferative status and other important cell biology-related parameters, such as cell growth pattern, and cytoskeletal organization. These findings support our hypothesis that ELF radiation could trigger a shift toward a more invasive phenotype.  相似文献   

2.
Deregulation of apoptosis alters the balance of cell proliferation and cell death, resulting in a variety of diseases, including cancer. In recent studies, sulforaphane (SFN) has demonstrated potent anti-tumor and chemopreventive activities. A possible signal transduction pathway has also been elucidated for SFN-induced apoptosis in human neuroblastoma SH-SY5Y cells. The present study further investigates the anti-proliferation activities of SFN through induced apoptosis in SH-SY5Y cells. We found that treating SH-SY5Y cells with SFN resulted in the depletion of mitochondrial membrane potential (Δψ), which in turn increased caspase 9, caspase 3, and the up-regulation of phosphorylated MEK/ERK without generating reactive oxygen species. Results were confirmed by MTT assay, which demonstrated the cytotoxic activity of SFN against SH-SY5Y cells (IC50 values of 20 μM).  相似文献   

3.

Background

Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells.

Methodology/Principal Findings

Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone.

Conclusions

The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome.  相似文献   

4.
BackgroundSialic acids (Sia) represent negative-charged terminal sugars on most glycoproteins and glycolipids on the cell surface of vertebrates. Aberrant expression of tumor associated sialylated carbohydrate epitopes significantly increases during onset of cancer. Since Sia contribute towards cell migration ( =  metastasis) and to chemo- and radiation resistance. Modulation of cellular Sia concentration and composition poses a challenge especially for neuroblastoma therapy, due to the high heterogeneity and therapeutic resistance of these cells. Here we propose that Metabolic Sia Engineering (MSE) is an effective strategy to reduce neuroblastoma progression and metastasis.MethodsHuman neuroblastoma SH-SY5Y cells were treated with synthetic Sia precursors N-propanoyl mannosamine (ManNProp) or N-pentanoyl mannosamine (ManNPent). Total and Polysialic acids (PolySia) were investigated by high performance liquid chromatography. Cell surface polySia were examined by flow-cytometry. Sia precursors treated cells were examined for the migration, invasion and sensitivity towards anticancer drugs and radiation treatment.ResultsTreatment of SH-SY5Y cells with ManNProp or ManNPent (referred as MSE) reduced their cell surface sialylation significantly. We found complete absence of polysialylation after treatment of SH-SY5Y cells with ManNPent. Loss of polysialylation results in a reduction of migration and invasion ability of these cells. Furthermore, radiation of Sia-engineered cells completely abolished their migration. In addition, MSE increases the cytotoxicity of anti-cancer drugs, such as 5-fluorouracil or cisplatin.ConclusionsMetabolic Sia Engineering (MSE) of neuroblastoma cells using modified Sia precursors reduces their sialylation, metastatic potential and increases their sensitivity towards radiation or chemotherapeutics. Therefore, MSE may serve as an effective method to treat neuroblastoma.  相似文献   

5.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

6.
We studied the effect of extremely low frequency (ELF) currents on gap junction intercellular communication (GJIC) mediated by connexin43 protein. Confluent monolayers of synovial fibroblasts (HIG-82) and neuroblastoma cells (5Y) were exposed in bath solution to 0-75 mA/m(2) (0-56 mV/m), 60 Hz. Single channel conductance, cell membrane current-voltage (I-V) curves, and Ca(2+) influx were measured using the nystatin single and double patch methods. The conductances of the closed and open states of the gap junction channel in HIG-82 cells were each significantly reduced (by 0.76 and 0.39 pA, respectively) in cells exposed to 20 mA/m(2). Current densities as low as 10 mA/m(2) significantly increased Ca(2+) influx in HIG-82 cells. No effects were seen in 5Y cells. The I-V curves of the plasma membranes of both types of cells were independent of 60 Hz electric fields and current densities, 0-75 mA/m(2), indicating that the effect of the 60 Hz fields on GJIC in HIG-82 cells was not mediated by a change in membrane potential. We conclude that ELF electric fields can alter GJIC in synovial cells via a mechanism that does not depend on changes in membrane potential, but may depend on Ca(2+) influx. The results open the possibility that GJIC mediated responses in synovial cells, such as for example, their secretory responses to proinflammatory cytokines, could be antagonized by the application of ELF electric fields.  相似文献   

7.
8.
Mammalian homologues of the Drosophila canonical transient receptor potential (TRP) proteins have been implicated to function as plasma membrane Ca(2+) channels. This study examined the role of TRPC1 in human neuroblastoma (SH-SY5Y) cells. SH-SY5Y cells treated with an exogenous neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP(+)) significantly decreased TRPC1 protein levels. Confocal microscopy on SH-SY5Y cells treatment with MPP(+) showed decreased plasma membrane staining of TRPC1. Importantly, overexpression of TRPC1 reduced neurotoxicity induced by MPP(+). MPP(+)-induced alpha-synuclein expression was also suppressed by TRPC1 overexpression. Protection of SH-SY5Y cells against MPP(+) was significantly decreased upon the overexpression of antisense TRPC1 cDNA construct or the addition of a nonspecific transient receptor potential channel blocker lanthanum. Activation of TRPC1 by thapsigargin or carbachol decreased MPP(+) neurotoxicity, which was partially dependent on external Ca(2+). Staining of SH-SY5Y cells with an apoptotic marker (YO-PRO-1) showed that TRPC1 protects SH-SY5Y neuronal cells against apoptosis. Further, TRPC1 overexpression inhibited cytochrome c release and decreased Bax and Apaf-1 protein levels. Interpretation of the above data suggests that reduction in the cell surface expression of TRPC1 following MPP(+) treatment may be involved in dopaminergic neurodegeneration. Furthermore, TRPC1 may inhibit degenerative apoptotic signaling to provide neuroprotection against Parkinson's disease-inducing agents.  相似文献   

9.
Increasing evidence suggests that Alzheimer’s disease is associated with mitochondrial dysfunction and oxidative damage. To develop a cellular model of Alzheimer’s disease, we investigated the effects of thioredoxin (Trx) expression in the response to mitochondrial dysfunction-enhanced oxidative stress in the SH-SY5Y human neuroblastoma cells. Treatment of SH-SY5Y cells with 15 mM of NaN3, an inhibitor of cytochrome c oxidase (complex IV), led to alteration of mitochondrial membrane potential but no significant changes in cell viability. Therefore, cells were first treated with 15 mM NaN3 to induce mitochondrial dysfunction, then, exposed to different concentrations of H2O2. Cell susceptibility was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and morphological observation. Expressions of Trx mRNA and protein were determined by RT-PCR; and Western-blot analysis, respectively. It was found that the SH-SY5Y cells with mitochondrial impairment had lower levels of Trx mRNA and protein, and were significantly more vulnerable than the normal cells after exposure to H2O2 while no significant changes of Trx mRNA and protein in SH-SY5Y cells exposed to H2O2 but without mitochondrial complex IV inhibition. These results, together with our previous study in primary cultured neurons, demonstrated that the increased susceptibility to oxidative stress is induced at least in part by the down-regulation of Trx in SH-SY5Y human neuroblastoma cells with mitochondrial impairment and also suggest the mitochondrial dysfunction-enhanced oxidative stress could be used as a cellular model to study the mechanisms of Alzheimer’s disease and agents for prevention and treatment.  相似文献   

10.
Surgery induced inflammation is a potent promoter of tumour recurrence and metastasis in colorectal cancer. The recently discovered family of Nox enzymes represent a major source of endogenous reactive oxygen species (ROS) and are now heavily implicated in tumour cell metastasis. Interestingly, Nox enzymes can be ‘purposefully’ activated by inflammatory cytokines and growth factors which are present in abundance in the peri-operative window. As colon cancer cells express Nox enzymes and Toll-like receptor 4 (TLR-4), we hypothesised that LPS may potentiate the ability of colon cancer cells to metastasise via Nox enzyme mediated redox signalling. In support of this hypothesis, this paper demonstrates that LPS induces a significant, transient increase of endogenous ROS in SW480, SW620 and CT-26 colon cancer cells. This increase in LPS-induced ROS activity is completely abrogated by a Nox inhibitor, diphenyleneiodonium (DPI), Nox1 siRNA and an NF-κB inhibitor, Dihydrochloride. A significant increase in Nox1 and Nox2 protein expression occurs following LPS treatment. Inhibition of NF-κB also attenuates the increase of Nox1 and Nox2 protein expression. The sub-cellular location of LPS-induced ROS generation lies mainly in the endoplasmic reticulum. LPS activates the PI3K/Akt pathway via Nox generated ROS and this signal is inhibited by DPI. This LPS activated Nox mechanism facilitates a significant increase in SW480 colon cancer cell adhesion to collagen I, which is inhibited by DPI, Nox1 siRNA and a PI3K inhibitor. Altogether, these data suggest that the LPS-Nox1 redox signalling axis plays a crucial role in facilitation of colon cancer cell adhesion, thus increasing the metastatic potential of colon cancer cells. Nox1 may represent a valuable target in which to prevent colon cancer metastasis.  相似文献   

11.
Neuroblastoma is a childhood tumor of the peripheral nervous system that remains largely uncurable by conventional methods. Mannitol induces apoptosis in neuroblastoma cell types and insulin-like growth factor I (IGF-I) protects these cells from hyperosmotic-induced apoptosis by affecting apoptosis-regulatory proteins. In the current study, we investigate factors that enable SH-SY5Y neuroblastoma cells to survive in the presence of an apoptotic stimulus. When SH-SY5Y cells are exposed to high mannitol concentrations, more than 60% of the cells are apoptotic within 48 h. Normal CS prevents hyperosmotic-induced apoptosis in a dose-dependent manner, with 0.6% CS protecting 50% of the cells, and 3% CS rescuing more than 70% of the cells from apoptosis. Serum also delays the commitment point for SH-SY5Y cells from 9 h to 35 h. A survey of several growth factors, including epidermal growth factor (EGF), platelet-derived growth factor (PDGF), nerve growth factor (NGF), fibroblast growth factor (FGF), and IGF-I reveals that IGF-I is a component of serum necessary for protection of neuroblastoma cells from death. Mitochondrial membrane depolarization occurs in greater than 40% of the cells after mannitol exposure and caspase-3 activation is increased in high mannitol conditions after 9 h. IGF-I blocks both the mitochondrial membrane depolarization and caspase-3 activation normally induced by hyperosmotic treatment in neuroblastoma cells. Our results suggest that (1) IGF-I is a key factor in serum necessary for protection from death and (2) IGF-I acts upstream from the mitochondria and the caspases to prevent apoptosis in human neuroblastoma.  相似文献   

12.
Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALK(WT)), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALK(WT) and ALK(F1174L) receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALK(WT) whereas both ALK(WT) and ALK(F1174L) were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALK(WT). We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization.  相似文献   

13.
Insulin-like growth factor I (IGF-I) and the type I IGF receptor are widely distributed in developing and adult mammalian nervous systems. In vitro, IGF-I is a mitogen for primary neurons and also for cells from the SH-SY5Y human neuroblastoma cell line, a well-characterized model system of neuronal growth. In the current study, we examined the effects of osmotic stress on SH-SY5Y cell viability and the mechanism by which IGF-I serves as a neuronal osmoprotectant. Within 24 hr, exposure of SH-SY5Y cells to hyperosmotic serum-free media decreased (1) the number of viable cells, (2) the rate of 3H-thymidine incorporation, and (3) cell cycle progression. The inclusion of 10 nM IGF-I with hyperosmotic media prevented the loss of cell viability. The osmoprotective effects of IGF-I were inhibited by α-IRJ, a blocking antibody of the type I IGF receptor. The observed loss of SH-SY5Y cell viability following hyperosmotic shock was due to an induction of programmed cell death as determined by flow cytometry and gel electrophoresis. Our results suggest that IGF-I can protect SH-SY5Y cells from hyperosmotic induced programmed cell death. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was to examine in the RA and CHOL treated SH-SY5Y cells the additive impacts of estradiol (E2) and brain-derived neurotrophic factor (BDNF) on cell morphology, cell population growth, synaptic vesicle recycling and presence of neurofilaments. The above features indicate a higher level of neuronal differentiation. Our data show that treatment for 10 days in vitro (DIV) with RA alone or when combined with E2 (RE) or CHOL (RC), but not when combined with BDNF (RB), significantly (p < 0.01) inhibited the cell population growth. Synaptic vesicle recycling, induced by high-K+ depolarization, was significantly increased in all treatments where RA was included (RE, RC, RB, RCB), and when all agents were added together (RCBE). Specifically, our results show for the first time that E2 treatment can alone increase synaptic vesicle recycling in SH-SY5Y cells. This work contributes to the understanding of the ways to improve suppression of neuroblastoma cells’ population growth by inducing maturation and differentiation.  相似文献   

15.
目的:构建Parkin基因过表达质粒并转染SH-SY5Y细胞,为进一步研究帕金森病的发病机制及中药的作用环节奠定基础。方法:首先构建Parkin基因过表达质粒,采用脂质体转导技术,将Parkin过表达质粒应用Lipo3000转染SH-SY5Y细胞。荧光显微镜观察细胞绿色荧光蛋白的表达;RT-PCR检测其Parkin mRNA的表达;Western Blot技术检测其Parkin蛋白的表达。结果:转染组可观测到较多的绿色荧光蛋白表达;Parkin过表达细胞Parkin mRNA和蛋白的表达均显著提高(P0.01)。结论:通过脂质体转导技术,应用Lipo3000可将Parkin过表达质粒成功转染入SH-SY5Y细胞,转染的基因和蛋白表达均较高,提示此法可成功构建Parkin基因过表达的细胞模型。  相似文献   

16.
The role of reactive oxygen species (ROS) in the regulation of signal transduction processes has been well established in many cell types and recently the fine tuning of redox signalling in neurons received increasing attention. With regard to this, the involvement of NADPH oxidase (NOX) in neuronal pathophysiology has been proposed but deserves more investigation. In the present study, we used SH-SY5Y neuroblastoma cells to analyse the role of NADPH oxidase in retinoic acid (RA)-induced differentiation, pointing out the involvement of protein kinase C (PKC) delta in the activation of NOX. Retinoic acid induces neuronal differentiation as revealed by the increased expression of MAP2, the decreased cell doubling rate, and the gain in neuronal morphological features and these events are accompanied by the increased expression level of PKC delta and p67phox, one of the components of NADPH oxidase. Using DPI to inhibit NOX activity we show that retinoic acid acts through this enzyme to induce morphological changes linked to the differentiation. Moreover, using rottlerin to inhibit PKC delta or transfection experiments to overexpress it, we show that retinoic acid acts through this enzyme to induce MAP2 expression and to increase p67phox membrane translocation leading to NADPH oxidase activation. These findings identify the activation of PKC delta and NADPH oxidase as crucial steps in RA-induced neuroblastoma cell differentiation.  相似文献   

17.
Insulin-like growth factor-II (IGF-II) is highly expressed in fetal tissues and may act as an autocrine growth factor during early embryogenesis. The SH-SY5Y human neuroblastoma cell line also expresses IGF-II and its receptors and responds to exogenous IGF-II with increased DNA synthesis, cell division, and neuritic outgrowth. For this study, we tested the hypothesis that IGF-II mediates autocrine growth of SH-SY5Y cells in serum-free media. SH-SY5Y cells plated at high densities proliferated in serum-free media, whereas sparsely plated cells did not. IGF-II mRNA levels increased within 24 hours of serum deprivation and were associated with increased immunoreactive IGF-II protein. Exogenous addition of IGF-II increased 3H-TdR incorporation and cell number in a dose- and time-dependent fashion. By nuclear labelling experiments using 5-Bromo-2′ deoxyuridine (BrdU), we detected a twofold higher percentage of S phase nuclei after a 24-hour incubation in IGF-II. Treatment of SH-SY5Y cells with anti-IGF-II antibodies in serum-free media inhibited cell proliferation, and this inhibition was partially overcome by the addition of increasing concentrations of IGF-II. Collectively, our results indicate that IGF-II mediates an autocrine growth mechanism in SH-SY5Y cells that is associated with increased IGF-II expression. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Despite their sympathetic neuroblast origin, highly malignant neuroblastoma tumors and derived cell lines have no or low expression of the neurotrophin receptor genes, trkA and trkC. Expression of exogenous trkA in neuroblastoma cells restores their ability to differentiate in response to nerve growth factor (NGF). Here we show that stable expression of trkC in SH-SY5Y neuroblastoma cells resulted in morphological and biochemical differentiation upon treatment with neurotrophin-3 (NT-3). To some extent, trkA- and trkC-transfected SH-SY5Y (SH-SY5Y/trkA and SH-SY5Y/trkC) cells resembled one another in terms of early signaling events and neuronal marker gene expression, but important differences were observed. Although induced Erk 1/2 and Akt/PKB phosphorylation was stronger in NT-3-stimulated SH-Y5Y/trkC cells, activation of the immediate-early genes tested was more prominent in NGF-treated SH-SY5Y/ trkA cells. In particular, c-fos was not induced in the SH-SY5Y/trkC cells. There were also phenotypic differences. The concentrations of norepinephrine, the major sympathetic neurotransmitter, and growth cone-located synaptophysin, a neurosecretory granule protein, were increased in NGF-treated SH-SY5Y/trkA but not in NT-3-treated SH-SY5Y/trkC cells. Our data suggest that NT-3/p145trkC and NGF/p140trkA signaling differ in some aspects in neuroblasoma cells, and that this may explain the phenotypic differences seen in the long-term neurotrophin-treated cells.  相似文献   

19.
Emodin (1,3,8-trihydroxy-6-methylanthaquinone), an active component present in the root and rhizome of Rheum palmatum L. (Polygonaceae) has anti-bacterial, anti-tumor, diuretic and vasorelaxant effects. However, its mechanism of action on the cell migration and invasion of human neuroblastoma cancer SH-SY5Y cells is not fully understood. In this study, firstly, the effects of emodin on the percentage of viable cells were examined by using MTT assay and it was found that emodin induced dose-and time-dependent inhibition in human neuroblastoma SH-SY5Y cells. Second, the effects of emodin on the migration and invasion of SH-SY5Y cells were examined by using wound assay and matrigel counting and the results showed that emodin suppressed the migration and invasion of SH-SY5Y cells. Third, we examined the effect of emodin on the levels of associated proteins by using Western blotting and the results indicated that emodin inhibited the levels of GRB2, RhoA, HIF-1α, VEGF, FAK, iNOS, COX2, p-p38, p-c-jun, MMP2, MMP9 and MMP7 but promoted the levels of PKC, PI3K, MEKK3 and NF-κB p65 that led to the inhibition of migration and invasion of SH-SY5Y cells in vitro.  相似文献   

20.
BackgroundJasmonates are plant lipid-derived oxylipins that act as key signaling compounds when plants are under oxidative stress, but little is known about their functions in mammalian cells. Here we investigated whether jasmonates could protect human neuroblastoma SH-SY5Y cells against oxidative stress-induced toxicity.MethodsThe cells were pretreated with individual jasmonates for 24 h and exposed to hydrogen peroxide (H2O2) for 24 h. Before the resulting cytotoxicity, intracellular reactive oxygen species (ROS) levels, and mitochondrial membrane potential were measured. We also measured intracellular glutathione (GSH) levels and investigated changes in the signaling cascade mediated by nuclear factor erythroid 2-related factor 2 (Nrf2) in cells treated with 12-oxo phytodienoic acid (OPDA).ResultsAmong the jasmonates, only OPDA suppressed H2O2-induced cytotoxicity. OPDA pretreatment also inhibited the H2O2-induced ROS increase and mitochondrial membrane potential decrease. In addition, OPDA induced the nuclear translocation of Nrf2 and increased intracellular GSH level and the expression of the Nrf2-regulated phase II antioxidant enzymes heme oxygenase-1, NADPH quinone oxidoreductase 1, and glutathione reductase. Finally, the cytoprotective effects of OPDA were reduced by siRNA-induced knockdown of Nrf2.ConclusionsThese results demonstrated that among jasmonates, only OPDA suppressed oxidative stress-induced death of human neuroblastoma cells, which occurred via activation of the Nrf2 pathway.General significancePlant-derived oxylipin OPDA may have the potential to provide protection against oxidative stress-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号