首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The puroindoline proteins (PINA and PINB) of wheat display lipid-binding properties which affect the grain texture, a critical parameter for wheat quality. Interestingly, the same proteins also display antibacterial and antifungal properties, attributed mainly to their Tryptophan-rich domain (TRD). Synthetic peptides based on this domain also display selectivity towards bacterial and fungal cells and do not cause haemolysis of mammalian cells. However, the mechanisms of these activities are unclear, thus limiting our understanding of the in vivo roles of PINs and development of novel applications. This study investigated the mechanisms of antimicrobial activities of synthetic peptides based on the TRD of the PINA and PINB proteins. Calcein dye leakage tests and transmission electron microscopy showed that the peptides PuroA, Pina-M and Pina-W→F selectively permeabilised the large unilamellar vesicles (LUVs) made with negatively charged phospholipids mimicking bacterial membranes, but were ineffective against LUVs made with zwitterionic phospholipids mimicking eukaryotic membranes. Propidium iodide fluorescence tests of yeast (Saccharomyces cerevisiae) cells showed the peptides were able to cause loss of membrane integrity, PuroA and Pina-M being more efficient. Scanning electron micrographs of PINA-based peptide treated yeast cells showed the formation of pits or pores in cell membranes and release of cellular contents. Gel retardation assays indicated the peptides were able to bind to DNA in vitro, and the induction of filamental growth of E. coli cells indicated in vivo inhibition of DNA synthesis. Together, the results strongly suggest that the PIN-based peptides exert their antimicrobial effects by pore formation in the cell membrane, likely by a carpet-like mechanism, followed by intracellular mechanisms of activity.  相似文献   

2.
In studies on the membranlytic action of various saponins on mycelium of Botrytis cinerea and Rhizoctonia solani digitonin, α-hederin and tomatin caused considerable leakage of free amino acids, while aescin and theasaponin were less effective. Cyclamin significantly damaged cell membranes of R. solani, but did not change the selective permeability of B. cinerea. Cell membrane disruption was accompanied by an enzymatic conversion of saponins into their corresponding aglycones in cell membrane vicinity, an effect which was significantly inhibited by aldonolactones, known inhibitors of β-glycosidases. These results lead to the conclusion that the hardly water soluble aglycones are the active part of the saponin molecules, the saponins themselves being only water soluble transport forms. It follows, that the presence of appropriate glycosidases in cell membranes, capable of converting saponins into their aglycones, is a prerequisite for the membranlytic action of saponins. The similarity of the membranlytic effects of sapoinins towards fungi and erythrocytes is discussed.  相似文献   

3.
Subfractionation studies showed that cytochrome b(5) (cyt b5), which has been considered to be a typical ER protein, was localized in both the endoplasmic reticulum membrane (ER) and the outer membrane of mitochondria in cauliflower (Brassica olracea) cells and was a component of antimycin A-insensitive NADH-cytochrome c reductase system in both membranes. When cDNA for cauliflower cyt b5 was introduced into mammalian (COS-7) and yeast cells as well as into onion cells, the expressed cytochrome was localized both in the ER and mitochondria in those cells. On the other hand, rat and yeast cyt b5s were specifically localized in the ER membranes even in the onion cells. Mutation experiments showed that cauliflower cyt b5 carries information that targets it to the ER and mitochondria within the carboxy-terminal 10 amino acids, as in the case of rat and yeast cyt b5s, and that replacement of basic amino acids in this region of cauliflower cyt b5 with neutral or acidic ones resulted in its distribution only in the ER. Together with the established findings of the importance of basic amino acids in mitochondrial targeting signals, these results suggest that charged amino acids in the carboxy-terminal portion of cyt b5 determine its location in the cell, and that the same mechanism of signal recognition and of protein transport to organelles works in mammalian, plant, and yeast cells.  相似文献   

4.
Baculoviridae is a large family of double-stranded DNA viruses that selectively infect insects. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus from the family. Many studies over the last several years have shown that AcMNPV can enter a wide variety of mammalian cells and deliver genetic material for foreign gene expression. While most animal viruses studied so far have developed sophisticated mechanisms to selectively infect specific cells and tissues in an organism, AcMNPV can penetrate and deliver foreign genes into most cells studied to this date. The details about the mechanisms of internalization have been partially described. In the present study, we have identified a cholesterol recognition amino acid consensus (CRAC) domain present in the AcMNPV envelope fusion protein GP64. We demonstrated the association of a CRAC domain with cholesterol, which is important to facilitate the anchoring of the virus at the mammalian cell membrane. Furthermore, this initial anchoring favors AcMNPV endocytosis via a dynamin- and clathrin-dependent mechanism. Under these conditions, efficient baculovirus-driven gene expression is obtained. In contrast, when cholesterol is reduced from the plasma membrane, AcMNPV enters the cell via a dynamin- and clathrin-independent mechanism. The result of using this alternative internalization pathway is a reduced level of baculovirus-driven gene expression. This study is the first to document the importance of a novel CRAC domain in GP64 and its role in modulating gene delivery in AcMNPV.  相似文献   

5.
Antimicrobial peptides (AMPs) are a class of broad-spectrum antibiotics known by their ability to disrupt bacterial membranes and their low tendency to induce bacterial resistance, arising as excellent candidates to fight bacterial infections. In this study we aimed at designing short 12-mer AMPs, derived from a highly effective and broad spectrum synthetic AMP, MSI-78 (22 residues), by truncating this peptide at the N- and/or C-termini while spanning its entire sequence with 1 amino acid (aa) shifts. These designed peptides were evaluated regarding antimicrobial activity against selected gram-positive Staphylococcus strains and the gram-negative Pseudomonas aeruginosa (P. aeruginosa).The short 12-mer peptide CEM1 (GIGKFLKKAKKF) was identified as an excellent candidate to fight P. aeruginosa infections as it displays antimicrobial activity against this strain and selectivity, with negligible toxicity to mammalian cells even at high concentrations. However, in general most of the short 12-mer peptides tested showed a reduction in antimicrobial activity, an effect that was more pronounced for gram-positive Staphylococcus strains. Interestingly, CEM1 and a highly similar peptide differing by only one aa-shift (CEM2: IGKFLKKAKKFG), showed a remarkably contrasting AMP activity. These two peptides were chosen for a more detailed study regarding their mechanism of action, using several biophysical assays and simple membrane models that mimic the mammalian and bacterial lipid composition.We confirmed the correlation between peptide helicity and antimicrobial activity and propose a mechanism of action based on the disruption of the bacterial membrane permeability barrier.  相似文献   

6.
Arenicin-3 is an amphipathic β-hairpin antimicrobial peptide that is produced by the lugworm Arenicola marina. In this study, we have investigated the mechanism of action of arenicin-3 and an optimized synthetic analogue, AA139, by studying their effects on lipid bilayer model membranes and Escherichia coli bacterial cells. The results show that simple amino acid changes can lead to subtle variations in their interaction with membranes and therefore alter their pre-clinical potency, selectivity and toxicity. While the mechanism of action of arenicin-3 is primarily dependent on universal membrane permeabilization, our data suggest that the analogue AA139 relies on more specific binding and insertion properties to elicit its improved antibacterial activity and lower toxicity, as exemplified by greater selectivity between lipid composition when inserting into model membranes i.e. the N-terminus of AA139 seems to insert deeper into lipid bilayers than arenicin-3 does, with a clear distinction between zwitterionic and negatively charged lipid bilayer vesicles, and AA139 demonstrates a cytoplasmic permeabilization dose response profile that is consistent with its greater antibacterial potency against E. coli cells compared to arenicin-3.  相似文献   

7.
In mammalian cells, levels of the integral membrane proteins 3-hydroxy-3-methylglutaryl-CoA reductase and Insig-1 are controlled by lipid-regulated endoplasmic reticulum-associated degradation (ERAD). The ERAD of reductase slows a rate-limiting step in cholesterol synthesis and results from sterol-induced binding of its membrane domain to Insig-1 and the highly related Insig-2 protein. Insig binding bridges reductase to ubiquitin ligases that facilitate its ubiquitination, thereby marking the protein for cytosolic dislocation and proteasomal degradation. In contrast to reductase, Insig-1 is subjected to ERAD in lipid-deprived cells. Sterols block this ERAD by inhibiting Insig-1 ubiquitination, whereas unsaturated fatty acids block the reaction by preventing the protein''s cytosolic dislocation. In previous studies, we found that the membrane domain of mammalian reductase was subjected to ERAD in Drosophila S2 cells. This ERAD was appropriately accelerated by sterols and required the action of Insigs, which bridged reductase to a Drosophila ubiquitin ligase. We now report reconstitution of mammalian Insig-1 ERAD in S2 cells. The ERAD of Insig-1 in S2 cells mimics the reaction that occurs in mammalian cells with regard to its inhibition by either sterols or unsaturated fatty acids. Genetic and pharmacologic manipulations coupled with subcellular fractionation indicate that Insig-1 and reductase are degraded through distinct mechanisms that are mediated by different ubiquitin ligase complexes. Together, these results establish Drosophila S2 cells as a model system to elucidate mechanisms through which lipid constituents of cell membranes (i.e., sterols and fatty acids) modulate the ERAD of Insig-1 and reductase.  相似文献   

8.
The aquaporins are integral membrane proteins from a larger family of major intrinsic protein (MIP) that form pores in the membrane of cells. These proteins selectively transport water and other small uncharged solutes across cell plasma membranes. The organization of water within cells and tissues is fundamental to life, and the aquaporins play an important role in serving as the plumbing system for cells. As many as thirteen mammalian AQPs have been characterized, which have been shown to be vital for the regulation of water homeostasis in most tissues, such as renal water balance and brain-fluid homeostasis. However, complete expression patterns of most of the aquaporins in lower vertebrate at embryo stages has not been elucidated. Currently, we systematically described the temporal-spatial expression pattern of nine zebrafish aquaporins, using whole amount in situ hybridization. The results of whole mount in situ hybridization revealed that members of aquaporins family displayed diverse expression pattern, each of aquaporins has its unique distribution in different cell types and tissues, suggesting that they might play distinct roles in the embryonic development. Overall, current study will provide new insight into the expression of vertebrate quaporins and an important basis for the functional analysis of aquaporins in zebrafish development.  相似文献   

9.
AlgE is a monomeric 18-stranded β-barrel protein required for secretion of the extracellular polysaccharide alginate in Pseudomonas aeruginosa. To assess the molecular mechanism of alginate secretion, AlgE was subjected to site-specific and FLAG epitope insertion mutagenesis. Except for β-strands 6 and 10, epitope insertions into the transmembrane β-strands abolished localization of AlgE to the outer membrane. Interestingly, an epitope insertion into β-strand 10 produced alginate and was only detectable in outer membranes isolated from cells grown on solid media. The deletion of nine C-terminal amino acid residues destabilized AlgE. Replacement of amino acids that constitute the highly electropositive pore constriction showed that individual amino acid residues have a specific function in alginate secretion. Two of the triple mutants (K47E+R353A+R459E and R74E+R362A+R459E) severely reduced alginate production. Mutual stability analysis using the algE deletion mutant PDO300ΔalgE(miniCTX) showed the periplasmic alginate biosynthesis proteins AlgK and AlgX were completely destabilized, while the copy number of the inner membrane c-di-GMP receptor Alg44 was reduced. Chromosomal integration of algE restored AlgK, AlgX, and Alg44, providing evidence for a multiprotein complex that spans the cell envelope. Periplasmic turn 4 of AlgE was identified as an important region for maintaining the stability of the putative multiprotein complex.  相似文献   

10.
Cyclization has been recognized as a valuable technique for increasing the efficacy of small molecule and peptide therapeutics. Here we report the application of a hydrocarbon staple to a rationally-designed cationic antimicrobial peptide (CAP) that acquires increased membrane targeting and interaction vs. its linear counterpart. The previously-described CAP, 6K-F17 (KKKKKK-AAFAAWAAFAA-NH2) was used as the backbone for incorporation of an i to i?+?4 helical hydrocarbon staple through olefin ring closing metathesis. Stapled versions of 6K-F17 showed an increase in non-selective membrane interaction, where the staple itself enhances the degree of membrane interaction and rate of cell death while maintaining high potency against bacterial membranes. However, the higher averaged hydrophobicity imparted by the staple also significantly increases toxicity to mammalian cells. This deleterious effect is countered through stepwise reduction of the stapled 6K-F17’s backbone hydrophobicity through polar amino acid substitutions. Circular dichroism assessment of secondary structure in various bacterial membrane mimetics reveals that a helical structure may improve – but is not an absolute requirement for – antimicrobial activity of 6K-F17. Further, phosphorus-31 static solid state NMR spectra revealed that both non-toxic stapled and linear peptides bind bacterial membranes in a similar manner that does not involve a detergent-like mechanism of lipid removal. The overall results suggest that the technique of hydrocarbon stapling can be readily applied to membrane-interactive CAPs to modulate how they interact and target biological membranes.  相似文献   

11.
Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. 19F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively 19F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. 31P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, 2H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization.  相似文献   

12.
What sequence features in integral membrane proteins determine which parts of the polypeptide chain will form transmembrane α-helices and which parts will be located outside the lipid bilayer? Previous studies on the integration of model transmembrane segments into the mammalian endoplasmic reticulum (ER) have provided a rather detailed quantitative picture of the relation between amino acid sequence and membrane-integration propensity for proteins targeted to the Sec61 translocon. We have now carried out a comparative study of the integration of Nout-Cin-orientated 19-residue-long polypeptide segments into the ER of the yeast Saccharomyces cerevisiae. We find that the ‘threshold hydrophobicity’ required for insertion into the ER membrane is very similar in S. cerevisiae and in mammalian cells. Further, when comparing the contributions to the apparent free energy of membrane insertion of the 20 natural amino acids between the S. cerevisiae and the mammalian ER, we find that the two scales are strongly correlated but that the absolute difference between the most hydrophobic and most hydrophilic residues is ∼ 2-fold smaller in S. cerevisiae.  相似文献   

13.
L-Amino acid oxidases (L-AAO; EC 1.4.3.2) comprise a group of flavoproteins that catalyze oxidative deamination of L-alpha amino acids to corresponding alpha-keto acids, NH3 and H2O2. Most of these enzymes are homodimers with molecular mass of 100–150 kDa that exhibit antiviral, antifungal, antibacterial, and anticancer activity. Among this group of enzymes L-lysine alpha-oxidase (LO) is especially important as its biological effects may differ from the effects of other L-AAO, because this enzyme preferentially oxidizes L-lysine, the essential amino acid for the human body, without any practical effect on other amino acids. Since molecular mechanisms of the cytotoxic action of LO still require better understanding, in this study we have investigated a possible mechanism of action of LO from Trichoderma cf. aureoviride Rifai VKMF-4268D. A rat pheochromocytoma PC12 cell culture was used as a model. Using flow cytometry a dose-dependent cell death induced by LO was shown. The increase in intracellular reactive oxygen species detected by the 2,7-dichlorodihydrofluorescein assay suggests that the oxidative pathway is one of mechanisms underlying the cytotoxic LO action; however, this does not rule out the involvement of other (previously demonstrated) mechanisms of LO effects on cell death.  相似文献   

14.
Two different approaches to prepare and characterise vacuoles from the filamentous fungus Ashbya gossypii are described, i.e. the isolation of vacuoles from hyphal cells and the controlled permeabilisation of the plasma membrane. By mechanical lysis of protoplasts and separation of the organelles on a stepped density gradient, we obtained a vacuolar fraction virtually free of contamination by other organelles, unlysed protoplasts and cell debris. The integrity of the isolated organelles was characterised by vital-staining, the presence of α-mannosidase, and retained accumulation of basic amino acids. In a second approach, the cell membrane of the fungus was selectively permeabilised by use of the saponin digitonin leaving the vacuoles in their physiological surrounding, i.e. protected by the rigid cell wall. The permeabilisation was monitored by the latency of predominantly cytosolic amino acids and the ATP status of the cells. Functional intactness of the vacuoles within the permeabilised hyphae was demonstrated by maintenance of the pH gradient across the vacuolar membrane as detected by accumulation of the fluorescent dye, Acridine orange. These two methods are well-suited tools for the in situ assay of intracellular compartmentation of metabolites, for vacuolar transmembrane fluxes in Ashbya gossypii, as well as for the direct access to vacuolar membranes and enzymes of this fungus.  相似文献   

15.
Corynebacterium glutamicum is the world’s largest producer of glutamate and lysine. Industrial glutamate overproduction is induced by empirical processes, such as biotin limitation, supplementation with specific surfactants or addition of sublethal concentration of certain antibiotics to the culture media. Although Gram-positive bacteria, C. glutamicum and related bacterial species and genera contain, in addition to the plasma membrane, an outer permeability membrane similar to that of Gram-negative microorganisms. As the amino acids have to cross both membranes, their integrity, composition and fluidity influence the export process. While the precise mechanism of the export of the amino acids by C. glutamicum is not fully understood, the excretion of amino acids through the inner membrane involved at least a major export system mechanosensitive channel MscS family (MscCG) encoded by NCgl1221. As the various industrial treatments have been shown to affect the lipid content of the bacterial cell, it is strongly believed that defects in the hallmark of the outer membrane, 2-alkyl, 3-hydroxylated long-chain fatty acids (mycolic acids), could be key factors in the glutamate overproduction. This review aims at giving an overview of the current knowledge on mycolic acids structure, biosynthesis and transfer in C. glutamicum and their relevance for amino acid biotechnological production.  相似文献   

16.
Previous studies have speculated, based on indirect evidence, that the action potential at the transverse (t)-tubules is longer than at the surface membrane in mammalian ventricular cardiomyocytes. To date, no technique has enabled recording of electrical activity selectively at the t-tubules to directly examine this hypothesis. We used confocal line-scan imaging in conjunction with the fast response voltage-sensitive dyes ANNINE-6 and ANNINE-6plus to resolve action potential-related changes in fractional dye fluorescence (ΔF/F) at the t-tubule and surface membranes of in situ mouse ventricular cardiomyocytes. Peak ΔF/F during action potential phase 0 depolarization averaged −21% for both dyes. The shape and time course of optical action potentials measured with the water-soluble ANNINE-6plus were indistinguishable from those of action potentials recorded with intracellular microelectrodes in the absence of the dye. In contrast, optical action potentials measured with the water-insoluble ANNINE-6 were significantly prolonged compared to the electrical recordings obtained from dye-free hearts, suggesting electrophysiological effects of ANNINE-6 and/or its solvents. With either dye, the kinetics of action potential-dependent changes in ΔF/F during repolarization were found to be similar at the t-tubular and surface membranes. This study provides what to our knowledge are the first direct measurements of t-tubule electrical activity in ventricular cardiomyocytes, which support the concept that action potential duration is uniform throughout the sarcolemma of individual cells.  相似文献   

17.
Knockdown of the actin-severing protein actin-depolymerizing factor (ADF)/cofilin inhibited export of an exogenously expressed soluble secretory protein from Golgi membranes in Drosophila melanogaster and mammalian tissue culture cells. A stable isotope labeling by amino acids in cell culture mass spectrometry–based protein profiling revealed that a large number of endogenous secretory proteins in mammalian cells were not secreted upon ADF/cofilin knockdown. Although many secretory proteins were retained, a Golgi-resident protein and a lysosomal hydrolase were aberrantly secreted upon ADF/cofilin knockdown. Overall, our findings indicate that inactivation of ADF/cofilin perturbed the sorting of a subset of both soluble and integral membrane proteins at the trans-Golgi network (TGN). We suggest that ADF/cofilin-dependent actin trimming generates a sorting domain at the TGN, which filters secretory cargo for export, and that uncontrolled growth of this domain causes missorting of proteins. This type of actin-dependent compartmentalization and filtering of secretory cargo at the TGN by ADF/cofilin could explain sorting of proteins that are destined to the cell surface.  相似文献   

18.
The intraerythrocytic malaria parasite, Plasmodium falciparum, derives amino acids from the digestion of host cell haemoglobin. However, it also takes up amino acids from the extracellular medium. Isoleucine is absent from adult human haemoglobin and an exogenous source of isoleucine is essential for parasite growth. An extracellular source of methionine is also important for the normal growth of at least some parasite strains. In this study we have characterised the uptake of methionine by P. falciparum-infected human erythrocytes, and by parasites functionally isolated from their host cells by saponin-permeabilization of the erythrocyte membrane. Infected erythrocytes take up methionine much faster than uninfected erythrocytes, with the increase attributable to the flux of this amino acid via the New Permeability Pathways induced by the parasite in the erythrocyte membrane. Having entered the infected cell, methionine is taken up by the intracellular parasite via a saturable, temperature-dependent process that is independent of ATP, Na+ and H+. Substrate competition studies, and comparison of the transport of methionine with that of isoleucine and leucine, yielded results consistent with the hypothesis that the parasite has at its surface one or more transporters which mediate the flux into and out of the parasite of a broad range of neutral amino acids. These transporters function most efficiently when exchanging one neutral amino acid for another, thus providing a mechanism whereby the parasite is able to import important exogenous amino acids in exchange for surplus neutral amino acids liberated from the digestion of host cell haemoglobin.  相似文献   

19.
Currently, multidrug-resistant bacteria are rapidly increasing worldwide because of the misuse or overuse of antibiotics. In particular, few options exist for treating infections caused by long-persisting oxacillin-resistant strains and recently proliferating carbapenem-resistant strains. Therefore, alternative treatments are urgently needed. The antimicrobial peptide (AMP) Lycosin-II is a peptide consisting of 21 amino acids isolated from the venom of the spider Lycosa singoriensis. Lycosin-II showed strong antibacterial activity and biofilm inhibition effects against gram-positive and gram-negative bacteria including oxacillin-resistant Staphylococcus aureus (S. aureus) and meropenem-resistant Pseudomonas aeruginosa (P. aeruginosa) isolated from patients. In addition, Lycosin-II was not cytotoxic against human foreskin fibroblast Hs27 or hemolytic against sheep red blood cells at the concentration of which exerted antibacterial activity. The mechanism of action of Lycosin-II involves binding to lipoteichoic acid and lipopolysaccharide of gram-positive and gram-negative bacterial membranes, respectively, to destroy the bacterial membrane. Moreover, Lycosin-II showed anti-inflammatory effects by inhibiting the expression of pro-inflammatory cytokines that are increased during bacterial infection in Hs27 cells. These results suggest that Lycosin-II can serve as a therapeutic agent against infections with multidrug-resistant strains.  相似文献   

20.
BackgroundAntimicrobial peptides (AMPs) are molecules with potential application for the treatment of microorganism infections. We, herein, describe the structure, activity, and mechanism of action of RQ18, an α-helical AMP that displays antimicrobial activity against Gram-positive and Gram-negative bacteria, and yeasts from the Candida genus.MethodsA physicochemical-guided design assisted by computer tools was used to obtain our lead peptide candidate, named RQ18. This peptide was assayed against Gram-positive and Gram-negative bacteria, yeasts, and mammalian cells to determine its selectivity index. The secondary structure and the mechanism of action of RQ18 were investigated using circular dichroism, large unilamellar vesicles, and molecular dynamic simulations.ResultsRQ18 was not cytotoxic to human lung fibroblasts, peripheral blood mononuclear cells, red blood cells, or Vero cells at MIC values, exhibiting a high selectivity index. Circular dichroism analysis and molecular dynamic simulations revealed that RQ18 presents varying structural profiles in aqueous solution, TFE/water mixtures, SDS micelles, and lipid bilayers. The peptide was virtually unable to release carboxyfluorescein from large unilamellar vesicles composed of POPC/cholesterol, model that mimics the eukaryotic membrane, indicating that vesicles' net charges and the presence of cholesterol may be related with RQ18 selectivity for bacterial and fungal cell surfaces.ConclusionsRQ18 was characterized as a membrane-active peptide with dual antibacterial and antifungal activities, without compromising mammalian cells viability, thus reinforcing its therapeutic application.General significanceThese results provide further insight into the complex process of AMPs interaction with biological membranes, in special with systems that mimic prokaryotic and eukaryotic cell surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号