首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HMGB1: endogenous danger signaling   总被引:12,自引:0,他引:12  
While foreign pathogens and their products have long been known to activate the innate immune system, the recent recognition of a group of endogenous molecules that serve a similar function has provided a framework for understanding the overlap between the inflammatory responses activated by pathogens and injury. These endogenous molecules, termed alarmins, are normal cell constituents that can be released into the extracellular milieu during states of cellular stress or damage and subsequently activate the immune system. One nuclear protein, High mobility group box-1 (HMGB1), has received particular attention as fulfilling the functions of an alarmin by being involved in both infectious and non-infectious inflammatory conditions. Once released, HMGB1 signals through various receptors to activate immune cells involved in the immune process. Although initial studies demonstrated HMGB1 as a late mediator of sepsis, recent findings indicate HMGB1 to have an important role in models of non-infectious inflammation, such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. Furthermore, in contrast to its pro-inflammatory functions, there is evidence that HMGB1 also has restorative effects leading to tissue repair and regeneration. The complex functions of HMGB1 as an archetypical alarmin are outlined here to review our current understanding of a molecule that holds the potential for treatment in many important human conditions.  相似文献   

2.
High mobility group box 1 (HMGB1) is a DNA-binding protein that possesses cytokinelike, proinflammatory properties when released extracellularly in the C23–C45 disulfide form. HMGB1 also plays a key role as a mediator of acute and chronic inflammation in models of sterile injury. Although HMGB1 interacts with multiple pattern recognition receptors (PRRs), many of its effects in injury models occur through an interaction with toll-like receptor 4 (TLR4). HMGB1 interacts directly with the TLR4/myeloid differentiation protein 2 (MD2) complex, although the nature of this interaction remains unclear. We demonstrate that optimal HMGB1-dependent TLR4 activation in vitro requires the coreceptor CD14. TLR4 and MD2 are recruited into CD14-containing lipid rafts of RAW264.7 macrophages after stimulation with HMGB1, and TLR4 interacts closely with the lipid raft protein GM1. Furthermore, we show that HMGB1 stimulates tumor necrosis factor (TNF)-α release in WT but not in TLR4−/−, CD14−/−, TIR domain-containing adapter-inducing interferon-β (TRIF)−/− or myeloid differentiation primary response protein 88 (MyD88)−/− macrophages. HMGB1 induces the release of monocyte chemotactic protein 1 (MCP-1), interferon gamma–induced protein 10 (IP-10) and macrophage inflammatory protein 1α (MIP-1α) in a TLR4- and CD14-dependent manner. Thus, efficient recognition of HMGB1 by the TLR4/MD2 complex requires CD14.  相似文献   

3.
High mobility group box 1 (HMGB1) is an evolutionarily conserved non-histone chromatin-binding protein. During infection or injury, activated immune cells and damaged cells release HMGB1 into the extracellular space, where HMGB1 functions as a proinflammatory mediator and contributes importantly to the pathogenesis of infl ammatory diseases. Recent studies reveal that inflammasomes, intracellular protein complexes, critically regulate HMGB1 release from activated immune cells in response to a variety of exogenous and endogenous danger signals. Double stranded RNA dependent kinase (PKR), an intracellular danger-sensing molecule, physically interacts with inflammasome components and is important for inflammasome activation and HMGB1 release. Together, these studies not only unravel novel mechanisms of HMGB1 release during infl ammation, but also provide potential therapeutic targets to treat HMGB1-related infl ammatory diseases.  相似文献   

4.
5.
Inflammatory bowel disease (IBD) is chronic inflammation of the gastrointestinal tract that affects millions of people worldwide. Although the etiology of IBD is not clear, it is known that products from stressed cells and enteric microbes promote intestinal inflammation. High mobility group box 1 (HMGB1), originally identified as a nuclear DNA binding protein, is a cytokine-like protein mediator implicated in infection, sterile injury, autoimmune disease, and IBD. Elevated levels of HMGB1 have been detected in inflamed human intestinal tissues and in feces of IBD patients and mouse models of colitis. Neutralizing HMGB1 activity by administration of anti-HMGB1 antibodies or HMGB1-specific antagonist improves clinical outcomes in animal models of colitis. Since HMGB1 binds to DNA with high affinity, here we developed a novel strategy to sequester HMGB1 using DNA immobilized on sepharose beads. Screening of DNA-bead constructs revealed that B2 beads, one linear form of DNA conjugated beads, bind HMGB1 with high affinity, capture HMGB1 ex vivo from endotoxin-stimulated RAW 264.7 cell supernatant and from feces of mice with colitis. Oral administration of B2 DNA beads significantly improved body weight, reduced colon injury, and suppressed colonic and circulating cytokine levels in mice with spontaneous colitis (IL-10 knockout) and with dextran sulfate sodium-induced colitis. Thus, DNA beads reduce inflammation by sequestering HMGB1 and may have therapeutic potential for the treatment of IBD.  相似文献   

6.
High mobility group box 1 (HMGB1) acts as an early mediator in inflammation and organ injury. Ischemia reperfusion (I/R) injury induces HMGB1 translocation and expression in ischemic areas. However, it is unknown whether selective warm liver I/R injury also induces the expression of HMGB1 in non-ischemic lobes. The present study aimed to test the hypothesis that selective liver I/R injury also causes HMGB1 translocation and up-regulates its expression in non-ischemic liver areas. In the present study, selective I/R injury was induced by clamping the median and left lateral liver lobes for 90 min followed by 0.5, 6 and 24 h reperfusion. We used male inbred Lewis rats; six animals for each point in time and six animals for the normal control group. Selective hepatic I/R injury induced morphological changes not only in ischemic lobes but also in non-ischemic lobes. HMGB1 translocation and expression was increased in a time-dependent manner in the ischemic lobes, and increased in with delayed onset in the non-ischemic lobes. Serum HMGB1 levels were increased after reperfusion. Furthermore, liver I/R injury up-regulated the expression of HMGB1 receptors (Toll-like receptor 4 and receptor for advanced glycation end products and pro-inflammatory cytokines (Tumor necrosis factor-alpha and interleukin-6) in both ischemic lobes, however, the up-regulation of these cytokines was more prominent in the ischemic lobes. In conclusion, selective warm I/R induces a substantial “sympathetic/bystander” effect on the non-ischemic lobes in terms of HMGB1 translocation and local cytokine production.  相似文献   

7.
8.
Necrotic cells release inflammatory mediators that activate cytokine production from innate immune cells. One mediator of this activation is high mobility group box 1 protein (HMGB1). HMGB1 is normally a chromatin-associated protein and is sequestered at condensed chromatin during apoptosis. How it is released from chromatin during necrotic cell death is not known. Here we show that after DNA-alkylating damage, the activation of poly(ADP)-ribose polymerase (PARP) regulates the translocation of HMGB1 from the nucleus to the cytosol. This displaced HMGB1 is subject to release if the cell then loses plasma membrane integrity as a result of necrosis. Both full-length HMGB1 and a truncated form of HMGB1 lacking the highly conserved glutamate-rich C-terminal tail can induce macrophage activation and tumor necrosis factor-alpha production. However, displacement of HMGB1 from the nucleus following PARP activation requires the presence of the glutamate-rich C-terminal tail. Although the C-terminal tail is not the sole substrate for PARP modification of HMGB1, it appears to be required to destabilize HMGB1 association with chromatin following PARP-dependent chromatin modifications. These data suggest that PARP-dependent nuclear-to-cytosolic translocation of HMGB1 serves to establish the ability of cells to release this potent inflammatory mediator upon subsequent necrotic death.  相似文献   

9.
High mobility group box 1 (HMGB1) protein, a late mediator of lethality in sepsis, can induce acute inflammatory lung injury. Here, we identify the critical role of alpha-chemokine receptors in the HMGB1-induced inflammatory injury and show that alpha-chemokine receptor inhibition increases survival in sepsis, in a clinically relevant time frame. Intratracheal instillation of recombinant HMGB1 induces a neutrophilic leukocytosis, preceded by alveolar accumulation of the alpha-chemokine macrophage inflammatory protein-2 and accompanied by injury and increased inflammatory potential within the air spaces. To investigate the role of alpha-chemokine receptors in the injury, we instilled recombinant HMGB1 (0.5 microg) directly into the lungs and administered a subcutaneous alpha-chemokine receptor inhibitor, Antileukinate (200 microg). alpha-Chemokine receptor blockade reduced HMGB1-induced inflammatory injury (neutrophils: 2.9 +/- 3.2 vs. 8.1 +/- 2.4 x 10(4) cells; total protein: 120 +/- 48 vs. 311 +/- 129 microg/ml; reactive nitrogen species: 2.3 +/- 0.3 vs. 3.5 +/- 1.3 microM; and macrophage migration inhibitory factor: 6.4 +/- 4.2 vs. 37.4 +/- 15.9 ng/ml) within the bronchoalveolar lavage fluid, indicating that HMGB1-induced inflammation and injury are alpha-chemokine mediated. Because HMGB1 can mediate late septic lethality, we administered Antileukinate to septic mice and observed increased survival (from 58% in controls to 89%) even when the inhibitor treatment was initiated 24 h after the induction of sepsis. These data demonstrate that alpha-chemokine receptor inhibition can reduce HMGB1-induced lung injury and lethality in established sepsis and may provide a novel treatment in this devastating disease.  相似文献   

10.
High mobility group box 1 (HMGB1) is a novel late mediator of inflammatory responses that contributes to endotoxin-induced acute lung injury and sepsis-associated lethality. Although acute lung injury is a frequent complication of severe blood loss, the contribution of HMGB1 to organ system dysfunction in this setting has not been investigated. In this study, HMGB1 was detected in pulmonary endothelial cells and macrophages under baseline conditions. After hemorrhage, in addition to positively staining endothelial cells and macrophages, neutrophils expressing HMGB1 were present in the lungs. HMGB1 expression in the lung was found to be increased within 4 h of hemorrhage and then remained elevated for more than 72 h after blood loss. Neutrophils appeared to contribute to the increase in posthemorrhage pulmonary HMGB1 expression since no change in lung HMGB1 levels was found after hemorrhage in mice made neutropenic with cyclophosphamide. Plasma concentrations of HMGB1 also increased after hemorrhage. Blockade of HMGB1 by administration of anti-HMGB1 antibodies prevented hemorrhage-induced increases in nuclear translocation of NF-kappa B in the lungs and pulmonary levels of proinflammatory cytokines, including keratinocyte-derived chemokine, IL-6, and IL-1 beta. Similarly, both the accumulation of neutrophils in the lung as well as enhanced lung permeability were reduced when anti-HMGB1 antibodies were injected after hemorrhage. These results demonstrate that hemorrhage results in increased HMGB1 expression in the lungs, primarily through neutrophil sources, and that HMGB1 participates in hemorrhage-induced acute lung injury.  相似文献   

11.
12.
Despite the potent antiinflammatory effects of pharmacologically induced adenosine 5'-monophosphate kinase (AMPK) activation on Toll-like receptor 4 (TLR4)-induced cellular activation, there is little evidence that AMPK is activated during inflammatory conditions. In the present studies, we examined mechanisms by which TLR4 engagement may affect the ability of AMPK to become activated in neutrophils and macrophages under in vitro conditions and in the lungs during lipopolysaccharide (LPS)-induced acute lung injury. We found that incubation of neutrophils or macrophages with LPS diminished the ability of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) or hydrogen peroxide (H(2)O(2)) to activate AMPK. Although ratios of AMP to adenosine 5'-triphosphate (ATP) were increased in LPS-treated neutrophils and in the lungs of LPS exposed mice, a condition that should result in AMPK activation, no activation of AMPK was found. Immunocytochemistry and Western blot analysis revealed that nuclear to cytosolic translocation of the proinflammatory mediator high mobility group box 1 protein (HMGB1) correlated with inhibition of AMPK activation in LPS-stimulated macrophages. Moreover, while induced overexpression of HMGB1 resulted in inhibition of AMPK activation, Small interfering RNA (siRNA)-induced knockdown of HMGB1 was associated with enhanced activation of AMPK in macrophages incubated with AICAR. Increased interaction between liver kinase B1 (LKB1), an upstream activator of AMPK, and HMGB1 was found in LPS-stimulated macrophages and in the lungs of mice exposed to LPS. These results suggest that nuclear to cytoplasmic translocation of HMGB1 in TLR4-activated cells potentiates inflammatory responses by binding to LKB1, thereby inhibiting the antiinflammatory effects of AMPK activation.  相似文献   

13.
Kang R  Livesey KM  Zeh HJ  Lotze MT  Tang D 《Autophagy》2011,7(8):904-906
High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein, actively released following cytokine stimulation as well as passively during cell injury and death. Autophagy is a tightly regulated cellular stress pathway involving the lysosomal degradation of cytoplasmic organelles or proteins. Organisms respond to oxidative injury by orchestrating stress responses such as autophagy to prevent further damage. Recently, we reported that HMGB1 is an autophagy sensor in the presence of oxidative stress. Hydrogen peroxide (H 2O 2) and loss of superoxide dismutase 1 (SOD1)-mediated oxidative stress promotes cytosolic HMGB1 expression and extracellular release. Inhibition of HMGB1 release or loss of HMGB1 decreases the number of autolysosomes and autophagic flux in human and mouse cell lines under conditions of oxidative stress. These findings provide insight into how HMGB1, a damage associated molecular pattern (DAMP), triggers autophagy as defense mechanism under conditions of cellular stress.  相似文献   

14.
High mobility group box 1 (HMGB1) is a NF released extracellularly as a late mediator of lethality in sepsis and as an early mediator of inflammation following injury. Here we demonstrate that in contrast to the proinflammatory role of HMGB1, preconditioning with HMGB1 results in protection following hepatic ischemia/reperfusion (I/R). Pretreatment of mice with HMGB1 significantly decreased liver damage after I/R. The protection observed in mice pretreated with HMGB1 was associated with a higher expression of IL-1R-associated kinase-M, a negative regulator of TLR4 signaling, compared with controls. We thus explored the possibility that HMGB1 preconditioning was mediated through TLR4 activation. HMGB1 preconditioning failed to provide protection in TLR4 mutant (C3H/HeJ) mice, but successfully reduced damage in TLR4 wild-type (C3H/HeOuj) mice. Our studies demonstrate that in contrast to the role of HMGB1 as an early mediator of inflammation and organ damage in hepatic I/R, HMGB1 preconditioning can be protective.  相似文献   

15.
《Autophagy》2013,9(8):904-906
High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein, actively released following cytokine stimulation as well as passively during cell injury and death. Autophagy is a tightly regulated cellular stress pathway involving the lysosomal degradation of cytoplasmic organelles or proteins. Organisms respond to oxidative injury by orchestrating stress responses such as autophagy to prevent further damage. Recently, we reported that HMGB1 is an autophagy sensor in the presence of oxidative stress. Hydrogen peroxide (H2O2) and loss of superoxide dismutase 1 (SOD1)-mediated oxidative stress promotes cytosolic HMGB1 expression and extracellular release. Inhibition of HMGB1 release or loss of HMGB1 decreases the number of autolysosomes and autophagic flux in human and mouse cell lines under conditions of oxidative stress. These findings provide insight into how HMGB1, a damage associated molecular pattern (DAMP), triggers autophagy as defense mechanism under conditions of cellular stress.  相似文献   

16.
17.
Mitochondria are organelles centrally important for bioenergetics as well as regulation of apoptotic death in eukaryotic cells. High-mobility group box 1 (HMGB1), an evolutionarily conserved chromatin-associated protein which maintains nuclear homeostasis, is also a critical regulator of mitochondrial function and morphology. We show that heat shock protein beta-1 (HSPB1 or HSP27) is the downstream mediator of this effect. Disruption of the HSPB1 gene in embryonic fibroblasts with wild-type HMGB1 recapitulates the mitochondrial fragmentation, deficits in mitochondrial respiration, and adenosine triphosphate (ATP) synthesis observed with targeted deletion of HMGB1. Forced expression of HSPB1 reverses this phenotype in HMGB1 knockout cells. Mitochondrial effects mediated by HMGB1 regulation of HSPB1 expression serve as a defense against mitochondrial abnormality, enabling clearance and autophagy in the setting of cellular stress. Our findings reveal an essential role for HMGB1 in autophagic surveillance with important effects on mitochondrial quality control.  相似文献   

18.
19.
High mobility group box-1 (HMGB1) is associated with the pathogenesis of inflammatory diseases. A previous study reported that intravenous injection of anti-HMGB1 monoclonal antibody significantly attenuated brain edema in a rat model of stroke, possibly by attenuating glial activation. Peripheral nerve injury leads to increased activity of glia in the spinal cord dorsal horn. Thus, it is possible that the anti-HMGB1 antibody could also be efficacious in attenuating peripheral nerve injury-induced pain. Following partial sciatic nerve ligation (PSNL), rats were treated with either anti-HMGB1 or control IgG. Intravenous treatment with anti-HMGB1 monoclonal antibody (2 mg/kg) significantly ameliorated PSNL-induced hind paw tactile hypersensitivity at 7, 14 and 21 days, but not 3 days, after ligation, whereas control IgG had no effect on tactile hypersensitivity. The expression of HMGB1 protein in the spinal dorsal horn was significantly increased 7, 14 and 21 days after PSNL; the efficacy of the anti-HMGB1 antibody is likely related to the presence of HMGB1 protein. Also, the injury-induced translocation of HMGB1 from the nucleus to the cytosol occurred mainly in dorsal horn neurons and not in astrocytes and microglia, indicating a neuronal source of HMGB1. Markers of astrocyte (glial fibrillary acidic protein (GFAP)), microglia (ionized calcium binding adaptor molecule 1 (Iba1)) and spinal neuron (cFos) activity were greatly increased in the ipsilateral dorsal horn side compared to the sham-operated side 21 days after PSNL. Anti-HMGB1 monoclonal antibody treatment significantly decreased the injury-induced expression of cFos and Iba1, but not GFAP. The results demonstrate that nerve injury evokes the synthesis and release of HMGB1 from spinal neurons, facilitating the activity of both microglia and neurons, which in turn leads to symptoms of neuropathic pain. Thus, the targeting of HMGB1 could be a useful therapeutic strategy in the treatment of chronic pain.  相似文献   

20.

Background

Extracellular high mobility group box 1 (HMGB1) protein can operate in a synergistic fashion with different signal molecules promoting an increase of cell Ca2+ influx. However, the mechanisms responsible for this effect of HMGB1 are still unknown.

Principal Findings

Here we demonstrate that, at concentrations of agonist per se ineffective, HMGB1 potentiates the activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) in isolated hippocampal nerve terminals and in a neuroblastoma cell line. This effect was abolished by the NMDA channel blocker MK-801. The HMGB1-facilitated NMDAR opening was followed by activation of the Ca2+-dependent enzymes calpain and nitric oxide synthase in neuroblastoma cells, resulting in an increased production of NO, a consequent enhanced cell motility, and onset of morphological differentiation. We have also identified NMDAR as the mediator of HMGB1-stimulated murine erythroleukemia cell differentiation, induced by hexamethylenebisacetamide. The potentiation of NMDAR activation involved a peptide of HMGB1 located in the B box at the amino acids 130–139. This HMGB1 fragment did not overlap with binding sites for other cell surface receptors of HMGB1, such as the advanced glycation end products or the Toll-like receptor 4. Moreover, in a competition assay, the HMGB1(130–139) peptide displaced the NMDAR/HMGB1 interaction, suggesting that it comprised the molecular and functional site of HMGB1 regulating the NMDA receptor complex.

Conclusion

We propose that the multifunctional cytokine-like molecule HMGB1 released by activated, stressed, and damaged or necrotic cells can facilitate NMDAR-mediated cell responses, both in the central nervous system and in peripheral tissues, independently of other known cell surface receptors for HMGB1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号