首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The discovery of intrinsic disorderness in proteins and peptide regions has given a new and useful insight into the working of biological systems. Due to enormous plasticity and heterogeneity, intrinsically disordered proteins or regions in proteins can perform myriad of functions. The flexibility in disordered proteins allows them to undergo conformation transition to form homopolymers of proteins called amyloids. Amyloids are highly structured protein aggregates associated with many neurodegenerative diseases. However, amyloids have gained much appreciation in recent years due to their functional roles. A functional amyloid fiber called curli is assembled on the bacterial cell surface as a part of the extracellular matrix during biofilm formation. The extracellular matrix that encases cells in a biofilm protects the cells and provides resistance against many environmental stresses. Several of the Csg (curli specific genes) proteins that are required for curli amyloid assembly are predicted to be intrinsically disordered. Therefore, curli amyloid formation is highly orchestrated so that these intrinsically disordered proteins do not inappropriately aggregate at the wrong time or place. The curli proteins are compartmentalized and there are chaperone-like proteins that prevent inappropriate aggregation and allow the controlled assembly of curli amyloids. Here we review the biogenesis of curli amyloids and the role that intrinsically disordered proteins play in the process.  相似文献   

3.
A method based on the use of signal peptide sequences from antimicrobial peptide (AMP) precursors was used to mine a placozoa expressed sequence tag database and identified a potential antimicrobial peptide from Trichoplax adhaerens. This peptide, with predicted sequence FFGRLKSVWSAVKHGWKAAKSR is the first AMP from a placozoan species, and was named trichoplaxin. It was chemically synthesized and its structural properties, biological activities and membrane selectivity were investigated. It adopts an α-helical structure in contact with membrane-like environments and is active against both Gram-negative and Gram-positive bacterial species (including MRSA), as well as yeasts from the Candida genus. The cytotoxic activity, as assessed by the haemolytic activity against rat erythrocytes, U937 cell permeabilization to propidium iodide and MCF7 cell mitochondrial activity, is significantly lower than the antimicrobial activity. In tests with membrane models, trichoplaxin shows high affinity for anionic prokaryote-like membranes with good fit in kinetic studies. Conversely, there is a low affinity for neutral eukaryote-like membranes and absence of a dose dependent response. With high selectivity for bacterial cells and no homologous sequence in the UniProt, trichoplaxin is a new potential lead compound for development of broad-spectrum antibacterial drugs.  相似文献   

4.
Antimicrobial peptides (AMPs) are a class of broad-spectrum antibiotics known by their ability to disrupt bacterial membranes and their low tendency to induce bacterial resistance, arising as excellent candidates to fight bacterial infections. In this study we aimed at designing short 12-mer AMPs, derived from a highly effective and broad spectrum synthetic AMP, MSI-78 (22 residues), by truncating this peptide at the N- and/or C-termini while spanning its entire sequence with 1 amino acid (aa) shifts. These designed peptides were evaluated regarding antimicrobial activity against selected gram-positive Staphylococcus strains and the gram-negative Pseudomonas aeruginosa (P. aeruginosa).The short 12-mer peptide CEM1 (GIGKFLKKAKKF) was identified as an excellent candidate to fight P. aeruginosa infections as it displays antimicrobial activity against this strain and selectivity, with negligible toxicity to mammalian cells even at high concentrations. However, in general most of the short 12-mer peptides tested showed a reduction in antimicrobial activity, an effect that was more pronounced for gram-positive Staphylococcus strains. Interestingly, CEM1 and a highly similar peptide differing by only one aa-shift (CEM2: IGKFLKKAKKFG), showed a remarkably contrasting AMP activity. These two peptides were chosen for a more detailed study regarding their mechanism of action, using several biophysical assays and simple membrane models that mimic the mammalian and bacterial lipid composition.We confirmed the correlation between peptide helicity and antimicrobial activity and propose a mechanism of action based on the disruption of the bacterial membrane permeability barrier.  相似文献   

5.
Antimicrobial peptides (AMPs), essential components of innate immunity, are found in a range of phylogenetically diverse species and are thought to act by disrupting the membrane integrity of microbes. In this paper, we used evolutionary signatures to identify sites that are most relevant during the functional evolution of these molecules and introduced amino acid substitutions to improve activity. We first demonstrate that the anti-microbial activity of chicken avian β-defensin-8, previously known as gallinacin-12, can be significantly increased against Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, Salmonella typhimurium phoP− mutant and Streptococcus pyogenes through targeted amino acid substitutions, which confer increased peptide charge. However, by increasing the AMP charge through amino acid substitutions at sites predicted to be subject to positive selection, antimicrobial activity against Escherichia coli was further increased. In contrast, no further increase in activity was observed against the remaining pathogens. This result suggests that charge-increasing modifications confer increased broad-spectrum activity to an AMP, whilst positive selection at particular sites is involved in directing the antimicrobial response against specific pathogens. Thus, there is potential for the rational design of novel therapeutics based on specifically targeted and modified AMPs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

6.
Curcumin is a plant diphenylheptanoid and has been investigated for its antibacterial activity. However, the therapeutic uses of this compound are limited due to its chemical instability. In this work, we evaluated the antimicrobial activity of diphenylheptanoids derived from curcumin against Gram-positive and Gram-negative bacteria, and also against Mycobacterium tuberculosis in terms of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values. 3,3′-Dihydroxycurcumin (DHC) displayed activity against Enterococcus faecalis, Staphylococcus aureus and M. tuberculosis, demonstrating MIC values of 78 and 156 µg/mL. In addition, DHC was more stable than curcumin in acetate buffer (pH 5.0) and phosphate buffer (pH 7.4) for 24 h at 37 °C. We proposed that membrane and the cell division protein FtsZ could be the targets for DHC due to that fact that curcumin exhibits this mode of antibacterial action. Fluorescence microscopy of Bacillus subtilis stained with SYTO9 and propidium iodide fluorophores indicated that DHC has the ability to perturb the bacterial membrane. On the other hand, DHC showed a weak inhibition of the GTPase activity of B. subtilis FtsZ. Toxicity assay using human cells indicated that DHC has moderate capacity to reduce viability of liver cells (HepG2 line) and lung cells (MRC-5 and A549 lines) when compared with doxorubicin. Alkaline comet assay indicated that DHC was not able to induce DNA damage in A549 cell line. These results indicated that DHC is promising compound with antibacterial and antitubercular activities.  相似文献   

7.
The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33 peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively. M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against bacterial pathogens of clinical importance.  相似文献   

8.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Tao R  Tong Z  Lin Y  Xue Y  Wang W  Kuang R  Wang P  Tian Y  Ni L 《Peptides》2011,32(8):1748-1754
Dental caries is a common oral bacterial infectious disease of global concern. Prevention and treatment of caries requires control of the dental plaque formed by pathogens such as Streptococcus mutans and Streptococcus sobrinus. Pleurocidin, produced by Pleuronectes americanus, is an antimicrobial peptide that exerts broad-spectrum activity against pathogenic bacteria and fungi. Moreover, pleurocidin shows less hemolysis and is less toxic than other natural peptides. In the present study, we investigated whether pleurocidin is an effective antibiotic peptide against common cariogenic microorganisms and performed a preliminary study of the antimicrobial mechanism. We assayed minimal inhibitory concentration (MIC), minimal bactericide concentration (MBC) and bactericidal kinetics and performed a spot-on-lawn assay. The BioFlux system was used to generate bacterial biofilms under controllable flow. Fluorescence microscopy and confocal laser scanning microscopy (CLSM) were used to analyze and observe biofilms. Scanning electron microscopy was used to observe the bacterial membrane. MIC and MBC results showed that pleurocidin had different antimicrobial activities against the tested oral strains. Although components of saliva could affect antimicrobial activity, pleurocidin dissolved in saliva still showed antimicrobial effects against oral microorganisms. Furthermore, pleurocidin showed a favorable killing effect against BioFlux flow biofilms in vitro. Our findings suggest that pleurocidin has the potential to kill dental biofilms and prevent dental caries.  相似文献   

10.
Antimicrobial peptides (AMPs) represent a potential new class of antimicrobial drugs with potent and broad-spectrum activities. However, knowledge about the mechanisms and rates of resistance development to AMPs and the resulting effects on fitness and cross-resistance is limited. We isolated antimicrobial peptide (AMP) resistant Salmonella typhimurium LT2 mutants by serially passaging several independent bacterial lineages in progressively increasing concentrations of LL-37, CNY100HL and Wheat Germ Histones. Significant AMP resistance developed in 15/18 independent bacterial lineages. Resistance mutations were identified by whole genome sequencing in two-component signal transduction systems (pmrB and phoP) as well as in the LPS core biosynthesis pathway (waaY, also designated rfaY). In most cases, resistance was associated with a reduced fitness, observed as a decreased growth rate, which was dependent on growth conditions and mutation type. Importantly, mutations in waaY decreased bacterial susceptibility to all tested AMPs and the mutant outcompeted the wild type parental strain at AMP concentrations below the MIC for the wild type. Our data suggests that resistance to antimicrobial peptides can develop rapidly through mechanisms that confer cross-resistance to several AMPs. Importantly, AMP-resistant mutants can have a competitive advantage over the wild type strain at AMP concentrations similar to those found near human epithelial cells. These results suggest that resistant mutants could both be selected de novo and maintained by exposure to our own natural repertoire of defence molecules.  相似文献   

11.
Antimicrobial peptides (AMPs) are naturally produced, gene encoded molecules with a direct antimicrobial activity against pathogens, often also showing other immune-related properties. Anuran skin secretions are rich in bioactive peptides, including AMPs, and we have reported a novel targeted sequencing approach to identify novel AMPs simultaneously in different frog species, from small quantities of skin tissue. Over a hundred full-length peptides were identified from specimens belonging to five different Ranidae frog species, out of which 29 were novel sequences. Six of these were selected for synthesis and testing against a panel of Gram-negative and Gram-positive bacteria. One peptide, identified in Rana arvalis, proved to be a potent and broad-spectrum antimicrobial, active against ATCC bacterial strains and a multi-drug resistant clinical isolate. CD spectroscopy suggests it has a helical conformation, while surface plasmon resonance (SPR) that it may self-aggregate/oligomerize at the membrane surface. It was found to disrupt the bacterial membrane at sub-MIC, MIC and above-MIC concentrations, as observed by flow cytometry and/or visualized by atomic force microscopy (AFM). Only a limited toxicity was observed towards peripheral blood mononuclear cells (PBMC) with a more pronounced effect observed against the MEC-1 cell line.  相似文献   

12.
Microplusin, a Rhipicephalus (Boophilus) microplus antimicrobial peptide (AMP) is the first fully characterized member of a new family of cysteine-rich AMPs with histidine-rich regions at the N and C termini. In the tick, microplusin belongs to the arsenal of innate defense molecules active against bacteria and fungi. Here we describe the NMR solution structure of microplusin and demonstrate that the protein binds copper II and iron II. Structured as a single α-helical globular domain, microplusin consists of five α-helices: α1 (residues Gly-9 to Arg-21), α2 (residues Glu-27 to Asn-40), α3 (residues Arg-44 to Thr-54), α4 (residues Leu-57 to Tyr-64), and α5 (residues Asn-67 to Cys-80). The N and C termini are disordered. This structure is unlike any other AMP structures described to date. We also used NMR spectroscopy to map the copper binding region on microplusin. Finally, using the Gram-positive bacteria Micrococcus luteus as a model, we studied of mode of action of microplusin. Microplusin has a bacteriostatic effect and does not permeabilize the bacterial membrane. Because microplusin binds metals, we tested whether this was related to its antimicrobial activity. We found that the bacteriostatic effect of microplusin was fully reversed by supplementation of culture media with copper II but not iron II. We also demonstrated that microplusin affects M. luteus respiration, a copper-dependent process. Thus, we conclude that the antibacterial effect of microplusin is due to its ability to bind and sequester copper II.  相似文献   

13.
There is an urgent need for novel antimicrobial agents to address the threat of bacterial resistance to modern society. We have used a structural motif found in antimicrobial marine hit compounds as a basis for synthesizing a library of antimicrobial sulfonamidobenzamide lead compounds. Potent in vitro antimicrobial activity against clinically relevant bacterial strains was demonstrated for two compounds, G6 and J18, with minimal inhibitory concentrations (MIC) of 4–16?μg/ml against clinical methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). The two compounds G6 and J18, together with several other compounds of this library, also caused ≥90% eradication of pre-established biofilm of methicillin-resistant S. epidermidis (MRSE) at 40?μg/ml. Using a luciferase assay, the mechanism of action of G6 was shown to resemble the biocide chlorhexidine by targeting the bacterial cell membrane.  相似文献   

14.
目的 壳聚糖(chitosan,CS)是一种天然的广谱抗菌活性物质。现有研究表明,壳聚糖与细菌细胞膜的相互作用是其发挥抗菌功能的关键。受限于传统实验技术的表征能力,壳聚糖与细菌细胞膜相互作用的具体机制仍有待研究。本文旨在研究壳聚糖与细菌细胞膜相互作用的分子机制。方法 本研究利用全原子分子动力学模拟技术主要探究了完全脱乙酰化的不同聚合度壳聚糖(八聚糖、十二聚糖和十六聚糖)与革兰氏阴性菌外膜(outer membrane,OM)和革兰氏阳性菌质膜(cytoplasmic membrane,CM)相互作用的动态过程。结果 壳聚糖主要依靠其氨基、碳6位羟基和碳3位羟基与OM和CM的头部极性区发生快速结合。随后壳聚糖末端糖基单元倾向于插入OM内部,深度约1 nm,并与脂质分子脂肪酸链上的羰基形成稳定的氢键相互作用。与之相比,壳聚糖分子难以稳定地插入CM内部。壳聚糖结合对膜结构性质产生影响,主要表现在降低OM和CM的单分子脂质面积,显著减少OM和CM极性区的Ca2+和Na+数目,破坏阳离子介导的脂质间相互作用。结论 本研究证明,壳聚糖带正电的氨基基团是介导其与膜相互作用的关键,并破环脂质间的相互作...  相似文献   

15.
Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents.  相似文献   

16.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Peptoids are peptidomimetic polymers that are resistant to proteolysis and less prone to immune responses; thus, they can provide a practical alternative to peptides. Among the various therapeutic applications that have been explored, cationic amphipathic peptoids have demonstrated broad-spectrum antibacterial activity, including activity towards drug-resistant bacterial strains. While their potency and activity spectrum can be manipulated by sequence variations, bacterial selectivity and systemic toxicity need to be improved for further clinical development. To this aim, we incorporated various hydrophobic or cationic residues to improve the selectivity of the previously developed antibacterial peptoid 1. The analogs with hydrophobic residues demonstrated non-specific cytotoxicity, while those with an additional cationic residue showed improved selectivity and comparable antibacterial activity. Specifically, compared to 1, peptoid 7 showed much lower hemolysis and cytotoxicity, while maintaining the antibacterial activity. Therefore, we believe that peptoid 7?has the potential to serve as a promising alternative to current antimicrobial therapies.  相似文献   

18.
BackgroundAntimicrobial peptides (AMPs) are molecules with potential application for the treatment of microorganism infections. We, herein, describe the structure, activity, and mechanism of action of RQ18, an α-helical AMP that displays antimicrobial activity against Gram-positive and Gram-negative bacteria, and yeasts from the Candida genus.MethodsA physicochemical-guided design assisted by computer tools was used to obtain our lead peptide candidate, named RQ18. This peptide was assayed against Gram-positive and Gram-negative bacteria, yeasts, and mammalian cells to determine its selectivity index. The secondary structure and the mechanism of action of RQ18 were investigated using circular dichroism, large unilamellar vesicles, and molecular dynamic simulations.ResultsRQ18 was not cytotoxic to human lung fibroblasts, peripheral blood mononuclear cells, red blood cells, or Vero cells at MIC values, exhibiting a high selectivity index. Circular dichroism analysis and molecular dynamic simulations revealed that RQ18 presents varying structural profiles in aqueous solution, TFE/water mixtures, SDS micelles, and lipid bilayers. The peptide was virtually unable to release carboxyfluorescein from large unilamellar vesicles composed of POPC/cholesterol, model that mimics the eukaryotic membrane, indicating that vesicles' net charges and the presence of cholesterol may be related with RQ18 selectivity for bacterial and fungal cell surfaces.ConclusionsRQ18 was characterized as a membrane-active peptide with dual antibacterial and antifungal activities, without compromising mammalian cells viability, thus reinforcing its therapeutic application.General significanceThese results provide further insight into the complex process of AMPs interaction with biological membranes, in special with systems that mimic prokaryotic and eukaryotic cell surfaces.  相似文献   

19.
ObjectiveWe investigated the levels and antimicrobial activity of antimicrobial proteins and peptides (AMPs) in breast milk consumed by preterm infants, and whether deficiencies of these factors were associated with late-onset neonatal sepsis (LOS), a bacterial infection that frequently occurs in preterm infants in the neonatal period.ResultsLevels of most AMPs and antibacterial activity in preterm breast milk were higher at day 7 than at day 21. Lactoferrin was the only AMP that limited pathogen growth >50% when added to formula at a concentration equivalent to that present in breast milk. Levels of AMPs were similar in the breast milk fed to infants with and without LOS, however, infants who developed LOS consumed significantly less breast milk and lower doses of milk AMPs than those who were free from LOS.ConclusionsThe concentrations of lactoferrin and defensins in preterm breast milk have antimicrobial activity against common neonatal pathogens.  相似文献   

20.
The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we assayed its antimicrobial activity against a broad spectrum of phytopathogenic bacteria and fungi. Synthetic KP exhibited antimicrobial activity in vitro towards Pseudomonas syringae, Erwinia carotovora, Botrytis cinerea, and Fusarium oxysporum. KP was also expressed in plants by using a Potato virus X (PVX)-derived vector as a fusion to the viral coat protein, yielding chimeric virus particles (CVPs) displaying the heterologous peptide. Purified CVPs showed enhanced antimicrobial activity against the above-mentioned plant pathogens and human pathogens such as Staphylococcus aureus and Candida albicans. Moreover, in vivo assays designed to challenge KP-expressing plants (as CVPs) with Pseudomonas syringae pv. tabaci showed enhanced resistance to bacterial attack. The results indicate that the PVX-based display system is a high-yield, rapid, and efficient method to produce and evaluate antimicrobial peptides in plants, representing a milestone for the large-scale production of high-added-value peptides through molecular farming. Moreover, KP is a promising molecule to be stably engineered in plants to confer broad-spectrum resistance to phytopathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号