首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hsp70 chaperones assist a large variety of protein folding processes in the cell by transient association with short peptide segments of proteins. The substrate binding and release cycle is driven by the switching between the low affinity ATP bound state and the high affinity ADP bound state of Hsp70. Considerable progress has been made recently by the identification of in vivo substrates for the Escherichia coli homolog, DnaK, and the molecular mechanisms which govern the DnaK-substrate interactions. Here we review the processes that generate DnaK substrates in vivo and the properties of these substrates, and we describe insights gained from structural and kinetic analysis of DnaK-substrate interaction.  相似文献   

2.
3.
4.
Chen C  Baldwin MR  Barbieri JT 《Biochemistry》2008,47(27):7179-7186
Tetanus toxin (TeNT) elicits spastic paralysis through the cleavage of vesicle-associated membrane protein-2 (VAMP-2) in neurons at the interneuronal junction of the central nervous system. While TeNT retrograde traffics from peripheral nerve endings to the interneuronal junction, there is limited understanding of the neuronal receptors utilized by tetanus toxin for the initial entry into nerve cells. Earlier studies implicated a coreceptor for tetanus toxin entry into neurons: a ganglioside binding pocket and a sialic acid binding pocket and that GT1b bound to each pocket. In this study, a solid phase assay characterized the ganglioside binding specificity and functional properties of both carbohydrate binding pockets of TeNT. The ganglioside binding pocket recognized the ganglioside sugar backbone, Gal-GalNAc, independent of sialic acid-(5) and sialic acid-(7) and GM1a was an optimal substrate for this pocket, while the sialic acid binding pocket recognized sialic acid-(5) and sialic acid-(7) with "b"series of gangliosides preferred relative to "a" series gangliosides. The high-affinity binding of gangliosides to TeNT HCR required functional ganglioside and sialic acid binding pockets, supporting synergistic binding to coreceptors. This analysis provides a model for how tetanus toxin utilizes coreceptors for high-affinity binding to neurons.  相似文献   

5.
SUMO processing and deconjugation are essential proteolytic activities for nuclear metabolism and cell-cycle progression in yeast and higher eukaryotes. To elucidate the mechanisms used during substrate lysine deconjugation, SUMO isoform processing and SUMO isoform interactions, X-ray structures were determined for a catalytically inert SENP2 protease domain in complex with conjugated RanGAP1-SUMO-1 or RanGAP1-SUMO-2, or in complex with SUMO-2 or SUMO-3 precursors. Common features within the active site include a 90 degrees kink proximal to the scissile bond that forces C-terminal amino acid residues or the lysine side chain toward a protease surface that appears optimized for lysine deconjugation. Analysis of this surface reveals SENP2 residues, particularly Met497, that mediate, and in some instances reverse, in vitro substrate specificity. Mutational analysis and biochemistry provide a mechanism for SENP2 substrate preferences that explains why SENP2 catalyzes SUMO deconjugation more efficiently than processing.  相似文献   

6.
7.
The physiological role of chromium (III) in diabetes mellitus has been an area of inconclusive research for many years. It is of great interest to explore the interactions made by chromium (III) to get a better insight into their role in glucose metabolism. To understand the molecular basis of chromium action we have carried out spectroscopic and crystallographic investigations on the binding of Cr(III)-Salen with insulin, as Cr(III)-Salen is reported to result in the enhancement of insulin activity. The Cr(III)-insulin complex formation has been characterised at two pHs, viz., 3.5 and 9.0 using UV-Vis and fluorescence studies. The crystallographic analysis of Cr(III)-Salen soaked cubic insulin crystals, using anomalous difference Fourier method, revealed B21 Glu to be the binding site for chromium (III).  相似文献   

8.
Transmembrane signaling events that propagate through receptors and transporters have critical roles in cellular function and regulation. In the Escherichia coli vitamin B(12) transporter, BtuB, substrate binding to the extracellular surface of the protein triggers the unfolding of an energy coupling motif at the periplasmic surface. Here, the molecular interactions mediating this substrate-dependent transmembrane signaling event were investigated in a novel way by combining a two mutant cycle analysis with site-directed spin labeling (SDSL). SDSL was used to monitor the unfolding and conformational equilibrium of the energy-coupling motif, and a thermodynamic two-mutant cycle analysis was used to estimate pair-wise interaction free energies for a pair of charged residues (D316 and R14) within the protein interior. The data indicate that D316 and R14 are critical to this structural transition. Substrate binding is shown to reduce the interaction free energy between these residues, thereby triggering the unfolding of the energy coupling motif of this membrane transporter. The result indicates that SDSL when used in combination with a mutant cycle analysis provides an approach to examine the molecular interactions mediating signaling events in membrane proteins.  相似文献   

9.
Schwappach B  Zerangue N  Jan YN  Jan LY 《Neuron》2000,26(1):155-167
K(ATP) channels are large heteromultimeric complexes containing four subunits from the inwardly rectifying K+ channel family (Kir6.2) and four regulatory sulphonylurea receptor subunits from the ATP-binding cassette (ABC) transporter family (SUR1 and SUR2A/B). The molecular basis for interactions between these two unrelated protein families is poorly understood. Using novel trafficking-based interaction assays, coimmunoprecipitation, and current measurements, we show that the first transmembrane segment (M1) and the N terminus of Kir6.2 are involved in K(ATP) assembly and gating. Additionally, the transmembrane domains, but not the nucleotide-binding domains, of SUR1 are required for interaction with Kir6.2. The identification of specific transmembrane interactions involved in K(ATP) assembly may provide a clue as to how ABC proteins that transport hydrophobic substrates evolved to regulate other membrane proteins.  相似文献   

10.
By testing the sensitivity of Escherichia coli OmpF porin to various natural and synthetic polyamines of different lengths, charge and other molecular characteristics, we were able to identify the molecular properties required for compounds to act as inhibitors of OmpF in the nanomolar range. Inhibitors require at least two amine groups to be effective. For diamines, the optimum length of the hydrocarbon spacer was found to be of eight to ten methylene groups. Triamine molecules based on a 12-carbon motif were found to be more effective that spermidine, an eight-carbon trivalent derivative. But differences in inhibition efficiencies were also found for trivalent compounds depending on the relative position of the internal secondary amine group with respect to the terminal groups. Finally, quaternary ammonium derivatives had no effect, suggesting that the nature of the terminal amine is important for the interaction. From these observations, we deduce that inhibition efficiency in the nanomolar range requires a 12-carbon chain triamine with terminal primary amine groups and replacement of the eighth methylene by a secondary amine. The need for this type of molecular architecture suggests that inhibition is governed by interactions between specific amine groups and protein residues, and that this is not simply due to the accumulation of charges into the pore. Together with previous observations from site-directed mutagenesis studies and inspection of the crystal structure of OmpF, these results allowed us to propose three residues (D113, D121 and Y294) as putative sites of interaction between the channel and spermine. Alanine substitution at each of these three residues resulted in a loss of inhibition by spermine, while mutations of only D113 and D121 affected inhibition by spermidine. Based on these observations, we suggest a model for the molecular determinants involved in the porin-polyamine interaction.  相似文献   

11.
Acriflavine resistance protein B acts as the active transporter in the multi-drug efflux pump Acriflavine resistance proteins A / B - Tolerance to colicins protein in Escherichia coli. Within the same reaction cycle intermediate all Acriflavine resistance protein B X-ray structures display highly similar conformations of the substrate-recruiting and transporting porter domain. To assess if this structural homogeneity is an intrinsic feature of Acriflavine resistance protein B or stems from other causes we performed a series of six independent, unbiased 100 ns molecular dynamics simulations of membrane-embedded, asymmetric, substrate-free wild type Acriflavine resistance protein B in a 150 mM NaCl solution. We find the porter domain more flexible than previously assumed displaying clear opening and closing motions of the proximal binding pocket (L and T-state) and the exit of the drug transport channels (O-intermediate). Concurrently the hydrophobic binding pocket favors a closed conformation in all three protomers. Our findings suggest that the conformational homogeneity seen in the crystal structures is likely an effect of bound but structurally unresolved substrate. Our simulations further imply that each of the known three reaction cycle intermediates occurs in at least two variants, the Thr676 loop independently regulates porter domain access and likely plays a key role in substrate transport. On a 100 ns time scale we find no evidence supporting the proposed LLL resting state in the absence of substrate. If the proximal binding pocket dynamics have an inhibiting effect on Acriflavine resistance protein B pump activity lowering the life time of substrate-accessible conformations, the observed dynamics could provide a structural explanation for the Acriflavine resistance protein B activity-enhancing effect of the adaptor protein Acriflavine resistance protein A stabilizing PC1 and PC2 subdomain orientations.  相似文献   

12.
Poux AN  Marmorstein R 《Biochemistry》2003,42(49):14366-14374
Histone acetyltransferase (HAT) proteins often exhibit a high degree of specificity for lysine-bearing protein substrates. We have previously reported on the structure of the Tetrahymena Gcn5 HAT protein (tGcn5) bound to its preferred histone H3 substrate, revealing the mode of substrate binding by the Gcn5/PCAF family of HAT proteins. Interestingly, the Gcn5/PCAF HAT family has a remarkable ability to acetylate lysine residues within diverse cognate sites such as those found around lysines 14, 8, and 320 of histones H3, H4, and p53, respectively. To investigate the molecular basis for this, we now report on the crystal structures of tGcn5 bound to 19-residue histone H4 and p53 peptides. A comparison of these structures with tGcn5 bound to histone H3 reveals that the Gcn5/PCAF HATs can accommodate divergent substrates by utilizing analogous interactions with the lysine target and two C-terminal residues with a related chemical nature, suggesting that these interactions play a general role in Gcn5/PCAF substrate binding selectivity. In contrast, while the histone H3 complex shows extensive interactions with tGcn5 and peptide residues N-terminal to the target lysine, the corresponding residues in histone H4 and p53 are disordered, suggesting that the N-terminal substrate region plays an important role in the enhanced affinity of the Gcn5/PCAF HAT proteins for histone H3. Together, these studies provide a framework for understanding the substrate selectivity of HAT proteins.  相似文献   

13.
Phosphodiesterases (PDEs) are key enzymes that control the cellular concentrations of the second messengers cAMP and cGMP. The mechanism for selective recognition of substrates cAMP and cGMP by individual PDE families remains a puzzle. To understand the mechanism for substrate recognition by PDE enzymes, the crystal structure of the catalytic domain of an inactive D201N mutant of PDE4D2 in complex with substrate cAMP has been determined at 1.56 A resolution. The structure shows that Gln369 forms only one hydrogen bond with the adenine of cAMP. This finding provides experimental evidence against the hypothesis of two hydrogen bonds between the invariant glutamine and the substrate cAMP in PDE4, and thus suggests that the widely circulated "glutamine switch" model is unlikely the mechanism for substrate recognition by PDEs. A structure comparison between PDE4D2-cAMP and PDE10A2-cAMP reveals an anti configuration of cAMP in PDE4D2 but syn in PDE10A2, in addition to different contact patterns of cAMP in these two structures. These observations imply that individual PDE families have their characteristic mechanisms for substrate recognition.  相似文献   

14.
15.
Lu WC  Wang CZ  Yu EW  Ho KM 《Proteins》2006,62(1):152-158
The Escherichia coli AcrB multidrug transporter recognizes a wide range of toxic chemicals and actively extrudes them from cells. The molecular basis of multidrug transport in AcrB remains unknown. Herein, we describe normal mode analyses to study important regions for drug recognition and extrusion in this transporter. Based on the X-ray structure of AcrB, an elastic network model has been able to correct errors arising from crystal imperfection in the experimental B-factors. The results allow us to understand the functional dynamics of this membrane protein. It is expected that this technique can be applied to other membrane proteins with known structures.  相似文献   

16.
17.
Acylaminoacylpeptidase (AAP) belongs to peptidase protein family, which can degrade amyloid β-peptide forms in the brains of patients, and hence leads to Alzheimer’s disease. And so, AAP is considered to be a novel target in the design of drugs against Alzheimer’s disease. In this investigation, six molecular dynamics simulations were used to find that the interaction between the wild-type and R526V AAP with two different substrates (p-nitrophenylcaprylate and Ac-Leu-p-nitroanilide). Our results were as follows: firstly, Ac-Leu-p-nitroanilide bound to R526V AAP to form a more disordered loop (residues 552–562) in the α/β-hydrolase fold like of AAP, which caused an open and inactive AAP domain form, secondly, binding p-nitrophenylcaprylate and Ac-Leu-p-nitroanilide to AAP can decrease the flexibility of residues 225–250, 260–270, and 425–450, in which the ordered secondary structures may contain the suitable geometrical structure and so it is useful to serine attack. Our theoretical results showed that the binding of the two substrates can induce specific conformational changes responsible for the diverse AAP catalytic specificity. These theoretical substrate-induced structural diversities can help explain the abilities of AAPs to recognize and hydrolyze extremely different substrates.  相似文献   

18.
The path of substrates in the multidrug efflux pump AcrB of Escherichia coli was examined by using labeling with a lipophilic substrate mimic, Bodipy FL maleimide. Four (out of eight) residues in the vestibule bound the dye, suggesting its role in substrate transport, whereas only one (out of nine) residue in the central cavity tested positive.  相似文献   

19.
The Escherichia coli multidrug transporter MdfA contains a single membrane-embedded charged residue (Glu-26) that plays a critical role in the recognition of cationic substrates (Edgar, R., and Bibi, E. (1999) EMBO J. 18, 822-832). Using an inactive mutant (MdfA-E26T), we isolated a spontaneous second-site mutation (MdfA-E26T/V335E) that re-established the recognition of cationic drugs by the transporter. Only a negative charge at position 335 was able to restore the functioning of the inactive mutant MdfA-E26T. Intriguingly, the two genetically interacting residues are located at remote and distinct regions along the secondary structure of MdfA. Glu-26 is located in the periplasmic half of transmembrane helix 1, and as shown here, the complementing charge at position 335 resides within the cytoplasmic loop connecting transmembrane helices 10 and 11. The spatial relation between the two residues was investigated by cross-linking. A functional split version of MdfA devoid of cysteines was constructed and introduced with a cysteine pair at positions 26 and 335. Strikingly, the results indicate that residues 26 and 335 are spatially adjacent, suggesting that they both constitute parts of the multidrug recognition pocket of MdfA. The fact that electrostatic interactions are preserved with cationic substrates even if the critical acidic residue is placed on another face of the pocket reveals an additional dimension of promiscuity in multidrug recognition and transport.  相似文献   

20.
Summary It was found by using the CPK molecular model that holes on the complexes of four nucleotides (C4N) on the tRNAs, namely complexes of the anticodon bases with the discriminator base at 4th position of 3 end, had lock and key relations to the corresponding protein amino acids. Various general features of the universal and mitochondrial genetic codes were easily explained in terms of the C4N model. The recognition mechanism of the tRNA by the aminoacyl-tRNA-synthetase is closely correlated with the formation of the C4N on the Rossmann fold on the synthetase. The meaning of the hypermodification of the tRNA base next to the third anticodon base and other phenomena were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号