首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root overproduction in embryogenic calli of wheat cv. ‘ChineseSpring’ was controlled by the addition of IAA-degradingcompounds (citric acid, MnSO4 or EDTA) to the culture media.In the presence of 20 gl–1 sucrose, the number of rootson calli decreased significantly when media for either callusmaintenance or plant regeneration were amended with citric acid.EDTA was less effective in reducing the number of roots thancitric acid. An increase in the amount of a 31kDa (P1) polypeptideunder conditions which favoured a reduction in root formationwas observed. Key words: Wheat, Triticum aestivum, IAA-degrading compounds, indoleacetic acid, root number.  相似文献   

2.
Cultivated Agave mapisaga and A. salmiana can have an extremelyhigh above-ground dry-weight productivity of 40 Mg ha–1yr–1. To help understand the below-ground capabilitiesthat support the high above-ground productivity of these Crassulaceanacid metabolism plants, roots were studied in the laboratoryand in plantations near Mexico City. For approximately 15-year-oldplants, the lateral spread of roots from the plant base averaged1.3 m and the maximal root depth was 0.8 m, both considerablygreater than for desert succulents of the same age. Root andshoot growth occurred all year, although the increase in shootgrowth at the beginning of the wet season preceded the increasein growth of main roots. New lateral roots branching from themain roots were more common at the beginning of the wet season,which favoured water uptake with a minimal biomass investment,whereas growth of new main roots occurred later in the growingseason. The root: shoot dry weight ratio was extremely low,less than 0.07 for 6-year-old plants of both species, and decreasedwith plant age. The elongation rates of main roots and lateralroots were 10 to 17 mm d–1, higher than for various desertsucculents but similar to elongation rates for roots of highlyproductive C3 and C4 agronomic species. The respiration rateof attached main roots was 32 µmol CO2 evolved kg–1dry weight s–1 at 4 weeks of age, that of lateral rootswas about 70% higher, and both rates decreased with root age.Such respiration rates are 4- to 5-fold higher than for Agavedeserti, but similar to rates for C3 and C4 agronomic species.The root hydraulic conductivity had a maximal value of 3 x 10–7ms–1 MPa–1 at 4 weeks of age, similar to A. deserti.The radial hydraulic conductivity from the root surface to thexylem decreased and the axial conductivity along the xylem increasedwith root age, again similar to A. deserti. Thus, although rootsof A. mapisaga and A. salmiana had hydraulic properties perunit length similar to those of a desert agave, their highergrowth rates, their higher respiration rates, and the greatersoil volume explored by their roots than for various desertsucculents apparently helped support their high above-groundbiomass productivity Key words: Crassulacean acid metabolism, productivity, root elongation rate, root system, water uptake  相似文献   

3.
Fine root production and mortality in central Himalayan evergreenforests consisting of Quercus leucotrichophora (banj oak) andPinus roxburghii (chir pine) were measured. Fine root productionand mortality decreased with increasing soil depth. Annual fineroot production was higher in the broadleafed forest than inthe coniferous forest, across months and seasons (1.3 and 1.5-timesmore living and dead root biomass, respectively in banj oakthan in chir pine). Live fine root production was 2508 kg ha-1year-1inchir pine forest and 3631 kg ha-1year-1in banj oak forest. Deadfine roots accumulated at a rate of 1197 and 1525 kg ha-1year-1inchir pine and in banj oak forest, respectively. In both forests,the greatest fine root production was recorded in the rainyseason followed by summer and winter seasons. Both soil androot nitrogen concentration decreased with increasing soil depth.Nitrogen uptake was higher in banj oak forest (12.1 kg ha-1year-1)than chir pine forest (7.2 kg ha-1year-1).Copyright 1999 Annalsof Botany Company Fine root production, fine roots, necromass, banj oak, chir pine, Quercus leucotrichophora , Pinus roxburghii .  相似文献   

4.
Untransformed and transformed root cultures of Swainsona galegifollawere established for swainsonine production. Transformed rootsgrew faster and produced higher swainsonine levels (62.3 µgg–1 DW) than untransformed roots (23.6 ,µg g–1DW) or roots of intact plants (8.7 µg g–1 DW). Transformationof a number of plant genotypes using A. rhizogenes strain LBA9402 showed that plant genotype Influences swainsonine levelin transformed roots but that a wide range of swainsonine levelscan be induced by separate transformation events in the samegenotype. Enhancement of swainsonine production was attemptedby treatment with sugars and induction of polyploid roots. Key words: Agrobacterium rhizogenes, root cultures, Swainsona galegifolia, swainsonine  相似文献   

5.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

6.
Bryce, J. H. and ap Rees, T. 1985. Comparison of the respiratorymetabolism of Plantago lanceolata L. and Plantago major L.—J.exp. Bot. 36 1559–1565. The aim of this work was to discover if the respiratory metabolismof the roots of Plantago lanceolata L. differed from that ofthe roots of Plantago major L. Measurements of oxygen uptakeand dry weight of excised root systems during growth of seedlingsprovided evidence that the two species differed in the amountof respiration needed to support a given increase in dry weight.Excised root systems were given a 6-h pulse in [U-14C]sucrosefollowed by a 16.5-h chase in sucrose. The detailed distributionof 14C amongst the major components of the roots at the endof the pulse and the chase revealed no significant differencebetween the two species. Patterns of 14CO2 production from [1-14C],[2-14C], [3,4-14C], and [6-14C]glucose of excised root systemsfrom plants of three ages were similar for the two species.It is suggested that there is no conclusive evidence for anysignificant inherent difference in the respiratory metabolismof the roots of the two species. Key words: 14C sugar metabolism, respiration, roots, Plantago  相似文献   

7.
Various plant and environmental factors influence the hydraulicproperties for roots, which were examined using negative hydrostaticpressures applied to the proximal ends of individual excisedroots of a common succulent perennial from the Sonoran Desert,Agave deserti Engelm. The root hydraulic conductivity, Lp, increasedsubstantially with temperature, the approximately 4-fold increasefrom 0.5°C to 40°C representing a Q10 of 1.45. Suchvariations in Lp with temperature must be taken into accountwhen modelling water uptake, as soil temperatures in the rootzone of such a shallow-rooted species vary substantially bothdaily and seasonally. At 20°C, Lp was 2.3 x 10–7 ms{macron}1MPa{macron}1for 3-week-old roots, decreasing to abouthalf this value at 10 weeks and then becoming approximatelyhalved again at 6 months. For a given root age, Lp for rainroots that are induced by watering as lateral branches on theestablished roots (which arise from the stem base) was aboutthe same as Lp for established roots. Hence, the conventionalbelief that rain roots have a higher Lp than do establishedroots is more a reflection of root age, as the rain roots tendto be shed following drought and thus on average are much youngerthan are established roots. Unlike previous measurements onroot respiration, lowering the gas-phase oxygen concentrationfrom 21% to 0% or raising the carbon dioxide concentration from0.1% to 2% had no detectable effect on Lp for rain roots andestablished roots. Lp for rain roots and established roots wasdecreased by an average of 11% and 35% by lowering the soilwater potential from wet conditions (soil=0 kPa) to {macron}40kPa and {macron}80 kPa, respectively. Such decreases in Lp mayreflect reduced water contact between soil particles and theroot surface and should be taken into account when predictingwater uptake by A. deserti. Key words: Gas phase, rain roots, root age, soil, temperature, water potential  相似文献   

8.
Hydraulic and osmotic properties of spruce roots   总被引:9,自引:6,他引:3  
Hydraulic and osmotic properties of roots of 2-year-old Norwayspruce seedlings (Plcea abiea (L.) Karst) were investigatedusing different techniques (steady flow, pressure probe, andstop flow technique). Root pressures were measured using theroot pressure probe. Compared to roots of herbaceous plantsor deciduous trees, excised root systems of spruce did not developappreciable root pressure (-0.001 to 0.004 MPa or -10 to 40cm of water column). When hydrostatic pressure gradients wereused to drive water flows across the roots, hydraulic conductivities(Lpr) were determined in two types of experiments: (i) rootpressure relaxations (using the root pressure probe) and (ii)steady flow experiments (pneumatic pressures applied to theroot system or xylem or partial vacuum applied to the xylem).Root Lpr ranged between 0.2 and 810–8m s–1 MPa–1(on average) depending on the conditions. In steady flow experiments,Lpr depended on the pressure applied (or on the flow acrossthe roots) and equalled (0.190.12) to (1.21.7)10–8m s–1 MPa–1 at pressures between 0.2 and 0.4 MPaand (1.51.3)10–8 m s–1 MPa–1 at appliedpressures between 0.8 and 1.0 MPa. When pressures or vacuumwere applied to the xylem, Lpr values were similar. The hydraulicconductivity measured during pressure relaxations (transientwater flows) was similar to that obtained at high pressures(and water flows). Although there was a considerable scatterin the data, there was a tendency of the hydraulic conductivityof the roots to decrease with increasing size of the root system.When osmotic gradients were used to drive water flows, Lpr valuesobtained with the root pressure probe were much smaller thanthose measured in the presence of hydrostatic gradients. Onaverage, a root Lpr=0.01710–8 was found for osmotic andLpr=6.410–8 m s–1 MPa–1 in correspondinghydrostatic experiments, i.e. the two values differed by a factorwhich was as large as 380. The same hydraulic conductivity asthat obtained in osmotic experiments using the pressure probewas obtained by the 'stop flow techniquel. In this technique,the suction created by an osmoticum applied to the root wasbalanced by a vacuum applied to the xylem. Lpr values of rootsystems did not change significantly when measured for up to5 d. In osmotic experiments with different solutes (Na2S04,K2S04, Ca(NO3)2, mannitol), no passive uptake of solutes couldbe detected, i.e. the solute permeability was very low whichwas different from earlier findings on roots of herbs. Reflectioncoefficients of spruce roots (O were low for solutes for whichplant cell membranes exhibit values of virtually unity (  相似文献   

9.
Maize (Zea mays L., hybrid Cargill 147) seedlings, grown inaseptic conditions, were inoculated with three strains of Azospirillumlipoferum (Al op 33, Al iaa 320, and ATCC 29708) or culturedin different concentrations of indol-3-acetic acid (IAA) orgibberellin A3 (GA3). After 48 h, root length, root surfacearea, root dry weight, and shoot dry weight were measured inall treatments. Gibberellin content was evaluated in selectedroots of control and Azospirillum inoculated seedlings by gaschromatography-mass spectrometry-selected ion monitoring withthe use of deuterated gibberellins as internal standards. Thethree strains of A. lipoferum, IAA (2 ng ml–1), and GA3(40 to 400 pg ml–1) significantly enhanced root growth.Improvement of root hair growth and density was obtained mainlywith A. lipoferum strain Al op 33 and GA3 40 pg ml–1.GA3 was identified by gas chromatography-mass spectrometry (byboth, full scan and selected ion monitoring) in a free acidfraction from roots of the seedlings inoculated with A. lipoferum.In the roots of the non inoculated seedlings GA3 was found afterhydrolysis of a fraction expected to contain glucosyl conjugates. (Received April 26, 1993; Accepted September 27, 1993)  相似文献   

10.
MOORE  R. 《Annals of botany》1985,56(2):173-187
Roots of Allium cepa L. cv. Yellow are differentially responsiveto gravity. Long (e.g. 40 mm) roots are strongly graviresponsive,while short (e.g. 4 mm) roots are minimally responsive to gravity.Although columella cells of graviresponsive roots are largerthan those of nongraviresponsive roots, they partition theirvolumes to cellular organelles similarly. The movement of amyloplastsand nuclei in columella cells of horizontally-oriented rootscorrelates positively with the onset of gravicurvature. Furthermore,there is no significant difference in the rates of organellarredistribution when graviresponsive and nongraviresponsive rootsare oriented horizontally. The more pronounced graviresponsivenessof longer roots correlates positively with (1) their caps being9.6 times more voluminous, (2) their columella tissues being42 times more voluminous, (3) their caps having 15 times morecolumella cells, and (4) their columella tissues having relativevolumes 4·4 times larger than those of shorter, nongraviresponsiveroots. Graviresponsive roots that are oriented horizontallyare characterized by a strongly polar movement of 45Ca2+ acrossthe root tip from the upper to the lower side, while similarlyoriented nongraviresponsive roots exhibit only a minimal polartransport of 45Ca2+. These results indicate that the differentialgraviresponsiveness of roots of A. cepa is probably not dueto either (1) ultrastructural differences in their columellacells, or (2) differences in the rates of organellar redistributionwhen roots are oriented horizontally. Rather, these resultsindicate that graviresponsiveness may require an extensive columellatissue, which, in turn, may be necessary for polar movementof 45Ca2+ across the root tip. Allium cepa, onion, root, columella tissue, columella cell, gravitropism, calcium, ultrastructure  相似文献   

11.
The effects of root age, temperature, and soil water statuson root hydraulic conductivity (LP) were investigated for twocactus species, Ferocactus acanthodes and Opuntia ficus-indica.The volumetric flux density of water was measured for excisedroot segments, either using negative hydrostatic pressures appliedto the proximal end or using reverse flow of water from theroot to the soil. For both species, LP at 20 ?C increased withroot age, average values reaching a maximum of 3.9 ? 10–7m s–1 MPa–1 for F. acanthodes and 5.2 ? 10–7m s–1 MPa–1 for O.ficus-indica at 11 to 17 weeksof age; LP subsequently declined with increasing root age forboth species. LP was maximal at a temperature of about 10 ?Cfor the youngest roots (1–3 weeks), this optimum shiftingto 40 ?C for 8-week-old roots of both species. For older roots(up to 1.5-years-old), LP increased with temperature from 0?C to 50 ?C, with a Q10 of 1.3 between 20 ?C and 30 ?C. At asoil water potential (soil) of –0.016 MPa, root LP wasindependent of the direction of water flow for both species.Depending on root age, LP declined 45- to 500-fold for F. acanthodesand 90- to 800-fold for O.ficus-indica as soil was reduced from–0.016 to –1.06 MPa, consistent with a rectifier-likebehaviour with respect to water movement between soil and roots.Incorporation of such responses into water uptake models shouldlead to a better understanding of root function. Key words: Ferocactus acanthodes, Opuntia ficus-indica, water potential, tension, reverse flow  相似文献   

12.
HESTNES  A. 《Annals of botany》1979,44(5):567-573
The distribution of exogenously-supplied radioactive labelledindol-3-yl-acetic acid (IAA) and gibberellin A1 (GA1) in geotropicallystimulated roots of Norway spruce (Picea abies (L.) Karst.)has been demonstrated. Seedlings were positioned with theirroot tips in 2.1 x 10–6 M [14C]IAA or 1.3 x 10–8m 3H-GA1 for 4 and 20 h, respectively. After geotropic stimulationfor 90 min in the horizontal position the root tips were cutlongitudinally in 50 µm thick sections, using a freeze-microtome.The radioactivity in the 14C-IAA treated roots occurred in higherconcentration in the lower than in the upper halves (ratio 1.25:1). A similar trend was observed in the [3H]GA1-treated rootswhere the ratio lower: upper halves was 2.04: 1. The ratio ofradioactivity in right and left halves of vertical roots wasapproximately the same in roots supplied with [14C]IAA and [3H]GA1(1.09: 1). The supplied radioactive compounds were analysed chromatographicallyafter extraction in methanol of 6 mm apical root segments. Onlya small fraction (7–8 per cent) of the supplied [14C]IAAwas revealed unchanged in the segments. The major part of thechromatographed, labelled compound has not been identified,but on basis of its RF value it is suggested that it may beindol-3-acetyl-aspartic acid (IAAasp). The chromatographic analysis of the [3H]GA,-treated segmentsshowed that only small fractions of this gibberellin has beenconverted to other compounds. These results have been discussed and correlated with knowledgeof plant growth regulators and their participation in root geotropism. Picea abies, spruce, geotropism, gibberellin A1, indol-3-yl-acetic acid, growth regulators, redistribution in roots  相似文献   

13.
Respiratory oxygen consumption by roots was 1·4- and1·6-fold larger in NH+4-fed than in NO-3-fed wheat (Triticumaestivum L.) and maize (Zea mays L.) plants respectively. Higherroot oxygen consumption in NH+4-fed plants than in NO-3-fedplants was associated with higher total nitrogen contents inNH+4-fed plants. Root oxygen consumption was, however, not correlatedwith growth rates or shoot:root ratios. Carbon dioxide releasewas 1·4- and 1·2-fold larger in NO+3-fed thanin NH+4-fed wheat and maize plants respectively. Differencesin oxygen and carbon dioxide gas exchange rates resulted inthe gas exchange quotients of NH-4-fed plants (wheat, 0·5;maize, 0·6) being greatly reduced compared with thoseof NO-3-fed plants (wheat, 1·0; maize, 1·1). Measuredrates of HCO-3 assimilation by PEPc in roots were considerablylarger in 4 mM NH+4-fed than in 4 NO-3 plants (wheat, 2·6-fold;maize, 8·3-fold). These differences were, however, insufficientto account for the observed differences in root carbon dioxideflux and it is probable that HCO-3 uptake is also importantin determining carbon dioxide fluxes. Thus reduced root extension in NH+4-fed compared with NO-3-fedwheat plants could not be ascribed to differences in carbondioxide losses from roots.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize assimilation, ammonium assimilation, root respiration  相似文献   

14.
Nicotiana glauca, N. tabacum, Solanian dulcamara and S. nigrumwere transformed by Agrobacteriun rhizogenes strain BN1010 (TLTR+).The TR-DNA stimulated agropine-positive root induction and wastransformation competent in the absence of the TL-DNA. An unusualpattern of root induction was seen when stem explants were inoculatedwith this strain; occasionally, agropine-positive roots wereinduced at the inoculation sites, but prolific agropine-negativeroots were formed in profusion down the stems. The utility ofBN1010 as an efficient co-integrating vector was demonstratedby the separate transfer of a fragment containing rol ABC (BN1010::pEM15) and of a chimeric nopaline synthase-kanamycin resistancegene (BN1010:: Neo) into plants. Root cultures of S. dulcamaratransformed with BN1010:: Neo had an unusual, positively geotropicphenotype. Strain BN1010:: pEM15 (rol ABC+DTR+) incitedmore roots down stem explants than strain A4T. This indicatesthat rol D may act to suppress agropine-negative root productionin N. glauca and N. tabacum. Key words: Agrobacterium rhizogenes, TL-DNA, TR-DNA, disarmed Ri vector, transformed roots, Nicotiana glauca, N. tabacun, Solatium dulcamara, S. nigrum  相似文献   

15.
This work examines the differences in partition and activityof 14C in two varieties of carrot (Daucus carota L.) contrastingin shoot to storage root ratio at maturity. Plants were grownin a controlled environment of 20 ?C and 500 µmol m–2s–1. During initiation of the storage root (10–25d from sowing) plants were exposed to 14CO2 for 1 h and theradioactivity in ethanol-soluble and -insoluble fractions ofshoots, storage and fibrous roots estimated at various timesup to 48 h after exposure. Between 35% and 40% of radioactivityinitially present in the plants was respired during the first24 h and 25–35% of that remaining after 24 h was foundin the roots, depending on age. The proportion found in thestorage region remained fairly constant between 15 and 25 dand was smaller than at 10 d. In the variety with a larger proportionof storage root at maturity (cv. Super Sprite), there was agreater proportion of label in both ethanol-soluble and -insolublefractions of the storage region soon after storage root initiationhad begun than in the variety with a smaller proportion of storageroot at maturity (cv. Kingston). There was no varietal differencein specific activities of the storage roots, but fibrous rootsof cv. Super Sprite showed a greater specific activity thanin cv. Kingston. Differences in shoot to storage root ratiomay thus be associated with characteristics of the fibrous roots.Partition and specific activities are discussed in relationto the initiation and development of the storage organ. Key words: Daucus carota, carrot, assimilate, partition, 14C, storage root  相似文献   

16.
A morphologically explicit numerical model for analysing wateruptake by individual roots was developed based on a conductornetwork, with specific conductors representing axial or radialconductivities for discrete root segments. Hydraulic conductivity(Lp; m s–1 MPa–1) was measured for roots of Agavedeserti Engelm. and Opuntia ficus-indica (L.) Miller by applyinga partial vacuum to the proximal ends of excised roots in solution.Lp was also measured for 40- to 80-mm segments along a root,followed by measurements of axial conductivity and calculationof radial conductivity. Predicted values of Lp for entire rootsbased on two to ten segments per root averaged 1.04±0.07(mean±s.e. mean for n = 3) of the measured Lp for A.deserti and 1.06±0.10 for O. ficus-indica. The modelalso closely predicted the drop in water potential along theroot xylem (xylem); when a tension of 50 kPa was applied tothe proximal ends of 0.2 m-long roots of A. deserti and O. ficus-indica,the measured xylem to midroot averaged 30 kPa compared witha predicted decrease of 36 kPa. Such steep gradients in xylemsuggest that the driving force for water movement from the soilto young distal roots may be relatively small. The model, whichagreed with an analytical solution for a simple hypotheticalsituation, can quantify situations without analytical solutions,such as when root and soil properties vary arbitrarily alonga root. Agave deserti, electrical circuit analog, hydraulic conductivity, Opuntia ficus-indica, water potential  相似文献   

17.
The roots of young plants of Avicennia marina (Forsk.) Vierh.grown under simulated tidal conditions were harvested so asto obtain the entire root system. The roots were subdividedand weighed and subsamples taken for manometric determinationof respiration rates at different temperatures. The supply capacityof the above-ground portion of the root system was determinedand the results compared in terms of supply and demand. Theoxygen consumption rate of the roots at 15°C was found tobe 1·69±0·07 µmol kg–1 s–1for cable roots and 3·27±0·12 µmolkg–1 s–1 for fine roots. The Q10 for respirationwas 2·55 for oxygen consumption in both fine and cableroots, and for carbon dioxide production was 2·66 forfine roots and 3·04 for cable roots. The respiratoryquotient varied with temperature but was less than unity. Concentrationdifferences of between 1·8 mol m–3 and 3·4mol m–3 between the inside of root and the air were sufficientto permit aeration of the root system by diffusion alone, andthe aerenchyma contained sufficient oxygen to maintain aerobicconditions while the roots were covered with water. The effectof tide and seasonal temperature change on gas exchange, togetherwith the possibility of some form of carbon dioxide fixationwithin the root, are examined and the implications of theseeffects on growth and development are discussed. Key words: Mangrove, root aeration, respiration, aerenchyma  相似文献   

18.
Trifluralin inhibited root elongation and induced root tip swellingof Zea mays and Triticum aeslivum. Time-course experiments showedthese effects occurred within 6 hr of treatment. As the rootstreated with trifluralin enlarged, there was a concomitant increasein root growth inhibition. Bioassays were devised to quantitativelymeasure the radial enlargement of trifluralin-treated roots.Histological observations indicated that swollen root tissuewas growing in a non-polar manner. The root swelling effectof trifluralin was inhibited 70% by the reducing agent, 2,3-dimercaptopropanol.Trifluralin had no effect on SH content of root tip proteinof Z.mays. 1 Published with the approval of the Director of die West VirginiaAgricultural Experiment Station as Scientific paper No. 1177. 2 Present address: Department of Biology, Mercyhurst College,Erie, Pennsylvania 16501, U.S.A. (Received March 19, 1971; )  相似文献   

19.
An extract from the roots of Lotus pedunculatus plants was foundto contain a compound toxic towards fast-growing Lotus rhizobia.This compound was identified as a flavolan, which has a prodeiphinidin:procyanidin ratio of 75:25. A fast-growing strain of Rhizobium(NZP2213) which forms ineffective root nodules on L. pedunculatuswas four times more sensitive to this flavolan (ED50 = 25 ?gml–1) than another strain (NZP2037, ED50 = 100 ?g ml–1)which forms effective root nodules on this species. The rootsof another Lotus species, L. tenuis, on which both strains ofRhizobium form effective root nodules, also contained a flavolan( 95% procyanidin) but both strains were relatively insensitiveto this flavolan (EDED50 = 350 to 500 ?g ml–1) L. pedunculatusplants bearing ineffective root nodules contained two to threetimes more flavolan in their roots (5–7 mg g–1 fr.wt.)than uninoculated control plants. Experiments with seven otherLotus species and with hybrid plants developed between L. pedunculatusand L. tenuis showed a relationship between the prodeiphinidin:procyanidin ratio of the flavolan in their roots and the effectivenessof root nodules formed on these plants by NZP2213. Quantitativebinding studies of the flavolan from L. pedunculatus to NZP2037and NZP2213 indicated that, while the affinity constants forbinding were similar for both strains, the surface of strainNZP2037 contained four times more binding sites than NZP2213,possibly correlating with this strain's ability to toleratehigher concentrations of this flavolan. It is suggested thatthe differential sensitivity of these two strains of Rhizobiumto flavolans is related to their ability to form effective rootnodules on Lotus species.  相似文献   

20.
在塔克拉玛干沙漠腹地,采用分层分段挖掘法对不同灌溉量条件下(每株每次灌水35、24.5和14 kg)梭梭(Haloxylon ammodendron)幼苗根系的分布特征进行了研究。结果表明: 1)随着灌溉量的减少,梭梭幼苗根系生物量的分布格局有向深层发展的趋势,在不同灌溉量条件下地下垂直各层生物量与土壤垂直深度呈显著的负对数关系;2)各灌溉量梭梭幼苗的最大水平根长为垂直根长的2倍,但不同灌溉量根系生物量的水平分布趋势一致;3)吸收根生物量的垂直分布与土壤含水量的垂直变化基本一致,均呈“单峰型”曲线,但灌溉量不同,吸收根生物量峰值在土壤中出现的位置也不同,随着灌溉量的减少,吸收根集中分布区有向深层发展的趋势;4)根长、根表面积和根体积随着土壤深度的增加均呈“单峰型”曲线,灌溉量愈小,根长、根表面积和根体积的峰值愈位于土壤的深层;5)根冠比和垂直根深与株高之比随着灌溉量的减少而呈增加的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号