首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flavanone 3β-hydroxylase plays very important role in the biosynthesis of flavonoids. A putative flavanone 3β-hydroxylase gene (Pef3h) from Populus euphratica was cloned and over-expressed in Escherichia coli. Induction performed with 0.1 mM IPTG at 20°C led to localization of PeF3H in the soluble fraction. Recombinant enzyme was purified by Ni-NTA affinity. The optimal activity of PeF3H was revealed at pH 7.6 and 35°C. The purified enzyme was stable over pH range of 7.6–8.8 and had a half-life of 1 h at 50°C. The activity of PeF3H was significantly enhanced in the presence of Fe2+ and Fe3+. The K M and V max for the enzyme using naringenin as substrate were 0.23 mM and 0.069 μmoles mg–1min-1, respectively. The K m and V max for eriodictyol were 0.18 mM and 0.013 μmoles mg–1min–1, respectively. The optimal conditions for naringenin bioconversion in dihydrokaempferol were obtained: OD600 of 3.5 for cell concentration, 0.1 mM IPTG, 5 mM α-ketoglutaric acid and 20°C. Under the optimal conditions, naringenin (0.2 g/L) was transformed into 0.18 g/L dihydrokaempferol within 24 h by the recombinant E. coli with a corresponding molar conversion of 88%. Thus, this study provides a promising flavanone 3β-hydroxylase that may be used in biosynthetic applications.  相似文献   

2.
1-2H-Phthalazine hydrazone (hydralazine; HYD), 2-1H-pyridinone hydrazone (2-hydrazinopyridine; HP), 2-quinoline-car☐ylic acid (QCA), 1-isoquinolinecar☐ylic acid (IQCA), 2,2′-bi-1H-imidazole (2,2′-biimidazole; BI), and 1H-imidazole-4-acetic acid (imidazole-4-acetic acid; IAA) directly and reversibly inhibit homogeneous soluble bovine dopamine β-hydroxylase (3,4-dihydroxyphenethylamine, ascorbate:oxygen oxidoreductase (β-hydroxylating), EC 1.14.17.1). HYD, QCA and IAA show competitive allosteric inhibition of dopamine β-hydroxylase with respect to ascorbate (Kis = 5.7(±0.9) μM, 0.14(±0.03) mM, 0.80(±0.20) mM; nH= 1.4(±0.1), 1.8(±0.4), 2.8(±0.6), respectively). HYD and IAA show slope and intercept mixed-type allosteric inhibition of dopamine β-hydroxylase with respect to tyramine. QCA shows allosteric uncompetitive inhibition of dopamine β-hydroxylase with respect to tyramine. HP, BI and IQCA all show linear competitive inhibition (Kis = 1.9(±0.3) μM, 21(±6) μM, and 0.9(±0.3) μM, respectively) with respect to ascorbate. HP and BI show linear mixed-type while IQCA shows linear uncompetitive inhibition of dopamine β-hydroxylase with respect to tyramine. In the presence of HP, HYD or IAA intersecting double-reciprocal plots of the initial velocity as a function of tyramine concentration at differing fixed levels of ascorbate are observed. These findings are consistent with a uni-uni-ping-pong-ter-bi kinetic mechanism for dopamine β-hydroxylase that involves a ternary enzyme-ascorbate-tyramine-oxygen complex. The results for HYD, QCA and IAA are the first examples of allosteric inhibitor interactions with dopamine β-hydroxylase.  相似文献   

3.
The release of tritium from [7-3H2]dopamine was investigated as a possible procedure for the assay for dopamine-β-hydroxylase (DβH) in rat and human serum. The release was found to have the same characteristics as those deseribed previously for DβH in serum; for example, an optimum rate of reaction at pH 5.0 or an enhancement of release with agents such as Cu2+ ions and N-ethylmaleimide which are known to inactivate endogenous inhibitors of DβH in serum. Tritium release was blocked by the DβH inhibitor fusaric acid but not by inhibitors of other dopamine-metabolizing enzymes in serum. Incubation of 14C-labeled dopamine along with [7-3H2]dopamine revealed that, under the standard assay conditions, the formation of [14C]norepinephrine was accompanied by release of one of the two tritium atoms on the 7-carbon. It was concluded that the procedure provided a simple and sensitive assay of DβH activity in serum.  相似文献   

4.
—Three days after superior cervical ganglionectomy of adult Sprague-Dawley rats, the levels of endogenous norepinephrine, the uptake process for [3H]norepinephrine and the activity of tyrosine hydroxylase decreased 99 per cent in the ipsilateral salivary gland. In contrast, the activity of dopamine-β-hydroxylase and DOPA decarboxylase fell to 30 per cent of the activity of the contralateral innervated gland. Examination of the cofactor requirements, the characteristics of activation by cupric ion and the immunologic identity of this residual hydroxylase activity indicated that it was authentic dopamine-β-hydroxylase. The residual dopamine-β-hydroxylase in the denervated gland had the same subcellular distribution as the enzyme in the innervated salivary gland. Procedures that caused atrophy or hypertrophy of the acinar cells did not affect the total content of dopamine-β-hydroxylase in the denervated salivary gland. Chemical sympathectomy with 6-hydroxy-dopamine caused a 40 per cent decrement in the serum levels of dopamine-β-hydroxylase but a 30 per cent increase in its activity in the denervated salivary gland. Although denervation caused a complete loss of endogenous norepinephrine in the salivary gland, it resulted in only a 15 per cent decrement in the levels of endogenous octopamine and β-phenylethanolamine, two other products of dopamine-β-hydroxylase.  相似文献   

5.
Abstract— The effects of several inhibitors, including vinblastine and colchicine, on the accumulation of a number of putative transmitters by a rat brain synaptosomal preparation and their subsequent release by excess K+ was examined. In addition, the effect of the alkaloids on the ATPase activity of the actomyosin-like protein, neurostenin, isolated from the synaptosomal preparation, was studied. The uptakes of radioactive glutamate, GABA, dopamine and norepinephrine were energy-dependent, as evidenced by their susceptibility to 0.01 mM carbonyl cyanide m-chlorophenylhydrazone (Cl-CCP), 01 mM ouabain and temperature. The active accumulations of GABA, dopamine and norepinephrine were also greatly inhibited by 1 mM6-hydroxydopamine (6-OHDA), 01 mM mersalyl, 0.05–0.25mM vinblastine and 0.1–1.0 mM colchicine. Vinblastine was approximately 10-fold more potent (K1, ?0.1 mM) than colchicine as an inhibitor. The release of actively accumulated dopamine or norepinephrine by excess K+ (increasing the [K+] from 5 to 30 mM) was inhibited somewhat when vinblastine was present during the entire incubation period. If the synaptosomes were preloaded with the radioactive compounds prior to addition of vinblastine, there was no discernible effect on the relative amount of material released by excess K+. However, the addition of inhibitor under the latter conditions caused a leakage of radioactivity into the medium even without excess K+ being present. Glutamate accumulation was somewhat different from that of GABA, dopamine or norepinephrine. Although it required energy for uptake, 6-OHDA, mersalyl, vinblastine or colchicine were not inhibitory. Studies of the oxidative metabolism of glutamate and GABA by this synaptosomal preparation indicated that the mechanisms of inhibition by vinblastine was not attributable to a metabolic effect. Both vinblastine and colchicine inhibited the Mg2+-stimulated, but not the Ca2+-activated ATPase of neurostenin. This effect was probably attributable to an interaction of the vinblastine with the neurin moiety of this actomyosin-like protein. We suggest that the inhibitory phenomena exhibited by vinblastine and colchicine in this synaptosomal preparation arose from the effect of these alkaloids on the neurin associated with the synaptic membrane.  相似文献   

6.
—The enzyme dopamine-β-hydroxylase (EC 1.14.17.1) which converts dopamine to noradrenaline was found to be present in substantial amounts in sheep brain hypothalamus and caudate nucleus and was located to the synaptic vesicle fractions in these two brain regions by subcellular fractionation. This dopamine-β-hydroxylase was associated with paniculate matter in these two brain regions since it was resistant to solubilization with butan-1-ol and 0.1% Triton X-100. As highly significant levels of dopamine-β-hydroxylase were present in the caudate nucleus, factors other than a simple lack of this enzyme must operate to maintain the low levels of noradrenaline and high levels of dopamine in the caudate nucleus. Purified adrenal dopamine-β-hydroxylase was substantially inhibited by two factors prepared from sheep brain hypothalamus and caudate nucleus. These were found to be cupric ions and a sulphydryl inhibitor. High levels of the sulphydryl inhibitor of dopamine-β-hydroxylase were found in synaptosomal fractions from sheep brain hypothalamus and caudate nucleus and the levels were comparable in both regions. Upon subfractionation of a synaptosome-containing fraction from the hypothalamus, the inhibitor was located predominantly in the soluble fraction, although there were significant levels in the synaptic vesicle fraction. Therefore, the sulphydryl inhibitor must be considered as a possible regulator of dopamine-β-hydroxylase activity. Free cupric ion concentrations as low as 2·5 μM were found to inhibit purified adrenal dopamine-β-hydroxylase in vitro and the concentration of copper in the soluble tissue component of hypothalamus and caudate nucleus was well above this minimal copper concentration. The percentage content of soluble copper in the caudate nucleus was significantly higher than in the hypothalamus. The importance of the soluble to particulate-bound ratio of copper in brain was shown in studies of the developing rat brain. A rapid increase in the level of copper in brain was found in the first 4 weeks but the level was constant by 2 months of age. The percentage of soluble copper, however, was maximal soon after birth and had declined to a constant figure by 2 months of age. A scheme for the regulation of dopamine-β-hydroxylase activity involving these factors is proposed.  相似文献   

7.
A fraction containing synaptic vesicles was isolated from rat heart by differential centrifugation, and the uptake of l-[3H]norepinephrine was studied in vitro., Uptake was highly dependent upon time and temperature, and was linear for 6 min at 30° or 4 min at 37°C. About 80% of the measured uptake required both ATP and Mg2+ and was inhibited by nanomolar concentrations of reserpine; no inhibition was obtained with cocaine. These properties are characteristic of storage vesicle uptake as opposed to synaptic membrane uptake. Uptake of norepinephrine was saturable and displayed a single Km value of 2 μM. The uptake was completely stereospecific, as unlabeled dl-norepinephrine was less than half as effective as unlabeled l-norepinephrine in reducing uptake of l-[3H]norepinephrine. Norepinephrine uptake could be inhibited by various phenethylamines and indoleamines following the rank order: reserpine > harmaline > 5-hydroxytryptamine > dopamine > norepinephrine. The vesicle preparation also incorporated [3H]5-hydroxytryptamine and [3H]dopamine. 5-Hydroxytryptamine uptake displayed a Km of 0.5 μM and a maximal uptake equivalent to that seen with norepineph-rine; dopamine uptake followed complex kinetics. Administration of reserpine in vivo or destruction of sympathetic neurons by long-term guanethidine treatment both eliminated the ability of the preparation to take up norepinephrine. Synaptic vesicles of cardiac sympathetic neurons thus resemble vesicles prepared from other central and peripheral catecholaminergic tissues; this method may be used readily to examine drug effects on rat heart synaptic vesicle function.  相似文献   

8.
Stop-flow techniques were used to examine the rapid axonal transport of norepinephrine in rabbit sciatic nerves. When the midpoint of a nerve incubated in vitro was cooled to 2°C while the remainder was kept at 37°C, norepinephrine accumulated proximal to the cooled region at a rate corresponding to an average transport velocity between 5 and 6 mm/hr in a distal direction. Since only about half of the norepinephrine appeared to be free to move, the mean velocity of the moving fraction was probably twice as great. No norepinephrine accumulated distal to a broad cooled region under conditions in which there would have been a significant accumulation of dopamine-β-hydroxylase activity. Therefore, unlike dopamine-β-hydroxylase, norepinephrine may not be subject to rapid retrograde transport. When nerves that had been locally cooled for 1.5 hr were rewarmed uniformly to 37°C, a wave of norepinephrine moved exclusively in a distal direction. The peak of this wave moved at a velocity of 12.2 ± 0.5 mm/hr or 293 ± 12 mm/day; the front of the wave moved at about 18 mm/hr. or 430 mm/day; and the tail probably moved faster than 6 mm/hr. This spectrum of velocities was virtually identical to the one displayed by the wave of dopamine-β-hydroxylase activity that was generated under the same conditions. Our results are consistent with the conclusion that all axonal structures containing norepinephrine also contain dopamine-β-hydroxylase, but they are not consistent with the converse.  相似文献   

9.
A highly purified preparation of cytochrome P-450, designated as P-45011β, has been obtained from bovine adrenal cortex mitochondria. The P-45011β exhibits remarkably high steroid hydroxylase activity in the reconstituted adrenal electron-donating system from NADPH via NADPH:adrenal ferredoxin oxidoreductase (EC 1.6.7.1) and adrenal ferredoxin. The turnover numbers (moles of hydroxylated product formed per minute per mole of P-450-heme) are 110 and 18 for respective 11β- and 18-hydroxylase activity when deoxycorticosterone is the substrate. The apparent Km value is 6 μm for both reactions. The ratio, about 6:1 between the two activities, is constant under various experimental conditions including those in the presence of competitive inhibitors of hydroxylation. In addition to deoxycorticosterone, other steroids such as 11-deoxycortisol, 4-androstene-3,17-dione and testosterone are the hydroxylatable substrates. In cases in which 4-androstene-3,17-dione, a C19-steroid, is the substrate, the hydroxylatable sites appear to be its respective 11β- and 19-position. The ratio between the two activities is about 4:1. In view of these results, it is concluded that one hemoprotein species, the P-45011β, is responsible for the hydroxylase reactions of various Corticosteroids. 2-Methyl-1,2-di-3-pyridyl-1-propanone (metyrapone) inhibits the P-45011β-catalyzed steroid hydroxylase reactions of either deoxycorticosterone at 11β- and 18-position or 4-androstene-3,17-dione at 11β- and 19-position (Ki = 0.1-0.2 μM). The P-450scc-catalyzed cholesterol desmolase reaction is also inhibited, although weakly (Ki = 160 μM). In addition, both adrenal cytochromes appeared to differ from each other in spectral response to metyrapone.  相似文献   

10.
Free ribulose bisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

11.
Adenylate cyclase, dopamine-β-hydroxylase and cytochrome b562 have been found to co-equilibrate on equilibrium sucrose gradients of lysed chromaffin granule membranes from bovine adrenal medulla. Peak activities for these enzymes, as well as maximum membrane protein concentration, were found to coincide at d = 1.11 gm cm?3, and the ratios of adenylate cyclase to both dopamine-β-hydroxylase and cytochrome b562 were constant across the entire peak. Adenylate cyclase activity has been reported previously to co-purify with chromaffin granule membranes, and we conclude, on the basis of these new data, that adenylate cyclase is also an intrinsic granule membrane enzyme.  相似文献   

12.
Kinetic studies of two glucosylation reactions catalyzed by an amyloglucosidase from Rhizopus sp. leading to the synthesis of vanillin-α/β-D-glucoside from D-glucose and vanillin and curcumin-bis-α-D-glucoside from D-glucose and curcumin were investigated in detail. Initial reaction rates were determined from kinetic runs involving different concentrations of D-glucose and vanillin (5?mM to 0.1?M) or D-glucose and curcumin (5?mM to 0.1?M). Graphical double reciprocal plots showed that the kinetics of the two enzyme catalyzed reactions exhibited Ping-Pong Bi-Bi mechanism where competitive substrate inhibition by vanillin/curcumin led to dead-end amyloglucosidase–vanillin/curcumin complexes at higher concentrations of vanillin/curcumin. An attempt to obtain the best fit of this kinetic model through computer simulation yielded in good approximation, the values of four important kinetic parameters, vanillin-α/β-D-glucoside: kcat=35.0±3.2 10?5M?h?1·mg, Ki=10.5±1.1?mM, KmD-glucose=60.0±6.2?mM, Kmvanillin=50.0±4.8?mM; curcumin-bis-α-D-glucoside: kcat=6.07±0.58 10?5M?h?1·mg, Ki=3.0±0.28?mM, KmD-glucose=10.0±0.9?mM, Kmcurcumin=4.6±0.5?mM.  相似文献   

13.
Free ribulose hisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

14.
Presynaptic muscarinic receptors labeled with [3H]dexetimide and noradrenaline in dog splenic nerves accumulated proximally to a ligature at the same rate of axonal transport. After fractionation by differential centrifugation, specific [3H]quinuclidinyl benzilate or [3H]dexetimide binding revealed a distribution profile similar to that of dopamine-β-hydroxylase and noradrenaline. Subfractionation by density gradient centrifugation showed two peaks of muscarinic receptors; the peak of density 1.17 contained noradrenaline and dopamine-β-hydroxylase whereas that of density 1.14 was devoid of noradrenaline. Therefore the foregoing experiments provide evidence that presynaptic muscarinic receptors are transported in sympathetic nerves in synaptic vesicles which are similar to those containing noradrenaline and dopamine-β-hydroxylase. This suggests a possible coexistence of receptor and neurotransmitter in the same vesicle.  相似文献   

15.
Samuel A. Sholl 《Steroids》1981,38(2):221-228
C17–20Lyase and 21-hydroxylase activities were measured during late gestation In the rhesus monkey (Macaca mulatta) fetal adrenal. Activities were assessed in 10,000 × g supernatants with 17-hydroxyprogesterone and NADPH as substrates. Although conversion of [14C]17-hydroxyprogesterone to [14C]androstenedione was noted, activity was often nonlinear and far less than the rate of hydroxylation which together prevented an accurate estimation of lyase rate, Km and Vmax. 21-Hydroxylase activity was characterized; the mean reaction rate was 1.6 × 10?3 μmoles NADPH oxidized/min. × mg?1 protein with an apparent Km of 3.6 × 10?7 M and a Vmax of 2.2 × 10?3 μmoles/min. × mg?1 protein. These values were similar to data obtained In adrenals from adult monkeys. A relatively high level of hydroxylase activity in the fetal gland might lead to an Inadequate supply of precursors for the synthesis of dehydroepiandrosterone sulfate (DHEAS) in the adrenal if it also contained 3β-hydroxysteroid dehydrogenase (3β-hsdh). However, the fact that the fetal adrenal reportedly is deficient in 3β-hsdh may serve to protect both DHEAS and corticoid synthesis.  相似文献   

16.
K m for L-phenylalanine, L-glutamic acid, L-aspartic acid, and the corresponding keto acids were calculated, as well as V max was measured for the following pairs of substrates: L-phenylalanine-2-ketoglutarate, L-phenylalanine-oxaloacetate, L-glutamic acid-phenylpyruvate, and L-aspartic acid-phenylpyruvate for aminotransferases PAT1, PAT2, and PAT3 from Erwinia carotovora catalyzing transamination of phenylpyruvate. The ping-pong bi-bi mechanism was shown for the studied aminotransferases. The substrate inhibition (K s) of PAT3 with 2-ketoglutarate and oxaloacetate was 10.23 ± 3.20 and 3.73 ± 1.99 mM, respectively. It was shown that L-β-(N-benzylamino)alanine was a competitive inhibitor with respect to L-phenylalanine for PAT1 (K i = 0.32 ± 0.07 mM, K m = 0.45 ± 0.1 mM, V max = 11. 6 ± 0.4 U/mg) at 25 mM concentration of 2-ketoglutarate in the reaction medium. L-β-(N-methylamino)alanine is a noncompetitive inhibitor with respect to L-phenylalanine for PAT3 (K I = 138.4 ± 95.4 mM, K m = 13.7 ±3.9 mM, V max = 18.6 ± 4.1 U/mg) at 2 mM concentration of 2-ketoglutarate in the reaction medium. L-stereo isomers of nonprotein analogues of aromatic amino acids were studied as substrates for PAT1, PAT2, and PAT3. L-β-(2-Br-phenyl)alanine, L-β-(4-Br-phenyl)alanine, L-β-(2-F-phenyl)alanine, and L-(2-F)tryptophan were good substrates for all three aminotransferases; L-α-methyl-β-(2-Br-phenyl)alanine and L-O-benzyltyrosine were substrates only for PAT3; L-β-(4-F-phenyl)alanine was a substrate for PAT1 and PAT3. Thus, these analogues of aromatic amino acids can be stereoselectively synthesized using the studied aminotransferases in the presence of the corresponding keto acids.  相似文献   

17.
The effects of fluphenazine (FLU) on the noradrenaline (NA) induced cAMP-synthesis in intact rat retinae were studied as a function of extracellular K+- and Ca2+-ions. Thus NA-induced cAMP levels were measured after incubating intact rat retinae with 50 μM NA in the presence or absence of FLU and in the presence of 1 or 10 mM theophylline. Results were: (1) Experimental condition a: standard NA-responses were measured after incubating retinae at 0.75 mM Ca2+, at 10 mM theophylline, at 10 μM FLU and at 2 and 0 mM K+. FLU does not affect the NA-response at 2 mM K+ significantly; however, it inhibits the NA-response at 0 mM K+ in this condition. (2) Experimental condition b: NA-responses were measured after incubating retinae at 0.125 mM Ca2+, 10 mM theophylline, 10 μM FLU and at 2 and 0 mM K+. At 2 mM K+ FLU replaces a Ca2+ function probably connected with the synthesis part of the NA-cAMP system and NA-responses in this low Ca2+ condition are consequently enhanced by FLU; however, FLU inhibits the NA-response at 0 mM K+ in this condition. (3) Experimental condition c: NA-responses were measured after incubating retinae at 0.75 mM Ca2+, 1 mM theophylline, 10 μM FLU and at 2 and 0 mM K+. At 2 mM K+ FLU enhances the NA-response by further inhibition of the degradation part of the NA-cAMP system; FLU inhibits the NA-response at 0 mM K+ in this condition. (4) The inhibitions of the NA-responses by FLU at 0 mM K+ in all three conditions a, b and c showed an apparent Km of 1 μM. (5) Low concentrations of K+ (0.4–0.8 mM) maintain the property of FLU to enhance the NA-responses at condition b (0.125 mM Ca2+) and at condition c (1 mM theophylline). Results suggest that the activation of NA-receptor coupled adenylate cyclases (NA-AC-ases) by NA, resulting in activation of phosphodiesterase activity by the NA-elevated cAMP-levels, is sustained by (a) membraneous factor(s) connected to the NA-receptor. This (these) factor(s) is (are) switched off in the absence of K+. Evidence has been presented, that Ca2+ and FLU do not have access to this intramembraneous factor-enzyme activating moiety of the NA-cAMP system at 0 mM K+. Between 0.4 and 0.8 mM K+ the factor-enzyme-NA-receptor complex is still intact.  相似文献   

18.
Human erythrocyte apotransketolase (EC 2.2.1.1) has been isolated with greater than 400 fold purification, and free of glyceraldehyde-3-phosphate dehydrogenase. The preparation has an absolute requirement for thiamin pyrophosphate in order to exhibit enzyme activity. Neither thiamin nor thiamin monophosphate could substitute for this requirement, nor were they inhibitory separately or together at concentrations of 1 mM. The Km for thiamin pyrophosphate was 0.4 μM. The Km for ribose-5-phosphate was 3 × 10?4M and for xylulose-5-phosphate 1.8 × 10?4M.  相似文献   

19.
Abstract: Stimulation of rat striatal adenylate cyclase by guanyl nucleotides was examined utilizing either MgATP or magnesium 5′-adenylylimidodiphos-phate (MgApp(NH) p) as substrate. GTP and 5′- guanylylimidodiphosphate (Gpp(NH) p) stimulate adenylate cyclase under conditions where the guanyl nucleotide is not degraded. The apparent stimulation of adenylate cyclase by GDP is due to an ATP-dependent transphosphorylase present in the tissue which converts GDP to GTP. We conclude that GTP is the physiological guanyl nucleotide responsible for stimulation of striatal adenylate cyclase. Dopamine lowers the Ka for Gpp(NH) p stimulation twofold, from 2.4 μM to 1.2 μM and increases maximal velocity 60%. The kinetics of Gpp(NH) p stimulation indicate no homotropic interactions between Gpp(NH) p sites and are consistent with one nonessential Gpp(NH) p activator site per catalytic site. Double reciprocal plots of the activation by free Mg2+ were concave downward, indicating either two sets of sites with different affinities or negative cooperativity (Hill coefficient = 0.3, K0.5= 23 mM). The data conform well to a model for two sets of independent sites and dopamine lowers the Ka for free Mg2+ at the high-affinity site threefold, from 0.21 mM to 0.07 mM. The antipsy-chotic drug fluphenazine blocks this shift in Ka due to dopamine. Dopamine does not appreciably affect the affinity of adenylate cyclase for the substrate, MgApp(NH) p. Therefore, dopamine stimulates striatal adenylate cyclase by increasing the affinity for free Mg2+ and guanyl nucleotide and by increasing maximal velocity.  相似文献   

20.
Desulfobacter postgatei is an acetate-oxidizing, sulfate-reducing bacterium that metabolizes acetate via the citric acid cycle. The organism has been reported to contain a si-citrate synthase (EC 4.1.3.7) which is activated by AMP and inorganic phosphate. It is show now, that the enzyme mediating citrate formation is an ATP-citrate lyase (EC 4.1.3.8) rather than a citrate synthase. Cell extracts (160,000xg supernatant) catalyzed the conversion of oxaloacetate (apparent K m=0.2 mM), acetyl-CoA (app. K m=0.1 mM), ADP (app. K m=0.06 mM) and phosphate (app. K m=0.7 mM) to citrate, CoA and ATP with a specific activity of 0.3 mol·min-1·mg-1 protein. Per mol citrate formed 1 mol of ATP was generated. Cleavage of citrate (app. K m=0.05 mM; V max=1.2 mol · min-1 · mg-1 protein) was dependent on ATP (app. K m=0.4 mM) and CoA (app. K m=0.05 mM) and yielded oxaloacetate, acetyl-CoA, ADP, and phosphate as products in a stoichiometry of citrate:CoA:oxaloacetate:ADP=1:1:1:1. The use of an ATP-citrate lyase in the citric acid cycle enables D. postgatei to couple the oxidation of acetate to 2 CO2 with the net synthesis of ATP via substrate level phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号