首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The efficiencies of 32 antisense oligodeoxynucleotides, 35 DNA enzymes and 6 ribozymes to bind and cleave the full-length messenger RNA of the vanilloid receptor subtype I were analyzed. Systematic screening of the mRNA revealed that good accessibility of a putative cleavage site for antisense oligodeoxynucleotides is a necessary but not a sufficient prerequisite for efficient DNA enzymes. Comparison of DNA enzymes and ribozymes against the same target sites revealed: 1) DNA enzymes were more active with longer recognition arms (9 nucleotides on either side), whereas ribozymes revealed higher activities with shorter recognition arms (7 nucleotides on either side). 2) It does not only depend on the target site but also on the enzyme sequence, whether a DNA enzyme or a ribozyme is more active. 3) The most efficient DNA enzyme found in this study had an approximately 15-fold higher reaction rate, k(react), and a 100-fold higher k(react)/K(m) under single turnover conditions compared with the fastest ribozyme. DNA enzymes as well as ribozymes showed significant activity under multiple turnover conditions, the DNA enzymes again being more active. We therefore conclude that DNA enzymes are an inexpensive, very stable and active alternative to ribozymes for the specific cleavage of long RNA molecules.  相似文献   

2.
From in vitro selection studies, DNA structures have been found that cleave target RNA sequence specifically and show a certain similarity to the well-investigated hammerhead ribozymes. Such DNA enzymes are more resistant to nuclease-mediated degradation than RNA enzymes. On the other hand, their cleavage activity is lower than the activity of hammerhead ribozymes. In the present study, we improved the activity of DNA enzymes by adding oligonucleotide facilitators complementary to the 5' and the 3' ends of the substrate to the cleavage reaction. DNA enzyme activity in vitro was monitored under multiple turnover conditions using short RNA model substrates. We have shown that oligonucleotide facilitators strongly enhance the multiple turnover activity of the DNA enzyme reaction. In one of our model systems with a suitable facilitator combination, we were able to observe a more than 200-fold enhancement of the k(cat)/Km value. The comparison of two DNA enzyme-substrate systems showed that the principal effects of the facilitators were independent of the substrate sequence. However, the degree of facilitator effect was noticeably dependent on the basic catalytic efficiency of DNA enzymes. Furthermore, the efficiency of the DNA enzyme reaction with facilitator was compared with the reaction of a DNA enzyme with a stem sequence extended by the sequence of the facilitator. The multiple turnover activity of such a "long DNA enzyme" is higher than the activity of the short DNA enzyme without facilitators. However, when compared with the multiple turnover reactions of the short DNA enzyme with facilitator, the reaction with the long DNA enzyme is considerably slower. The results obtained with our model systems demonstrate that oligonucleotide facilitators enable DNA enzymes to act as effective multiple turnover catalysts by cleavage of RNA substrates.  相似文献   

3.
For a long time nucleic acid-based approaches directed towards controlling the propagation of Hepatitis C Virus (HCV) have been considered to possess high potential. Towards this end, ribozymes (i.e. RNA enzymes) that specifically recognize and subsequently catalyze the cleavage of their RNA substrate present an attractive molecular tool. Here, the unique properties of a new generation of ribozymes are taken advantage of in order to develop an efficient and durable ribozyme-based technology with which to target HCV (+) RNA strands. These ribozymes resulted from the coupling of a specific on/off adaptor (SOFA) to the ribozyme domain derived from the Hepatitis Delta Virus (HDV). The former switches cleavage activity “on” solely in the presence of the desired RNA substrate, while the latter was the first catalytic RNA reported to function naturally in human cells, specifically in hepatocytes. In order to maximize the chances for success, a step-by-step approach was used for both the design and the selection of the ribozymes. This approach included the use of both bioinformatics and biochemical methods for the identification of the sites possessing the greatest potential for targeting, and the subsequent in vitro testing of the cleavage activities of the corresponding SOFA-HDV ribozymes. These efforts led to a significant improvement in the ribozymes'' designs. The ability of the resulting SOFA-HDV ribozymes to inhibit HCV replication was further examined using a luciferase-based replicon. Although some of the ribozymes exhibited high levels of cleavage activity in vitro, none appears to be a potential long term inhibitor in cellulo. Analysis of recent discoveries in the cellular biology of HCV might explain this failure, as well as provide some ideas on the potential limits of using nucleic acid-based drugs to control the propagation of HCV. Finally, the above conclusions received support from experiments performed using a collection of SOFA-HDV ribozymes directed against HCV (−) strands.  相似文献   

4.
5.
该文介绍了一种便捷、灵敏而又特异的环介导逆转录等温扩增基因检测技术,该技术分别使用特异对应于靶序列中8个基因区段的3对特殊引物,并在反转录酶和Bst-DNA聚合酶的作用下对靶序列进行等温核酸扩增反应,整个检测反应只需1~2h。利用这种技术成功检测了丙型肝炎病毒基因,对60份经Real-time PCR或RT-PCR验证阳性的血清样品检测,阳性符合率为98%。同时,对扩增终产物进一步进行酶切分析,并与HIV、HBV和不同亚型流感病毒RNA进行交叉反应和特异性测试,均与预期结果吻合。将Real-time PCR定量后的RNA系列稀释后对检测方法的灵敏度进行了测试。结果显示,该技术的检测灵敏度在理论上可达到10个拷贝的RNA分子。以上结果证明,RT-LAMP扩增技术是一种检测程序简单、灵敏度和特异性较高的基因检测手段,在丙型肝炎病毒的快速检测方面具有一定的开发潜力。  相似文献   

6.
7.
The molecular basis of the low-pH activation of the helicase encoded by the hepatitis C virus (HCV) was examined using either a full-length NS3 protein/NS4A cofactor complex or truncated NS3 proteins lacking the protease domain, which were isolated from three different viral genotypes. All proteins unwound RNA and DNA best at pH 6.5, which demonstrate that conserved NS3 helicase domain amino acids are responsible for low-pH enzyme activation. DNA unwinding was less sensitive to pH changes than RNA unwinding. Both the turnover rate of ATP hydrolysis and the Km of ATP were similar between pH 6 and 10, but the concentration of nucleic acid needed to stimulate ATP hydrolysis decreased almost 50-fold when the pH was lowered from 7.5 to 6.5. In direct-binding experiments, HCV helicase bound DNA weakly at high pH only in the presence of the non-hydrolyzable ATP analog, ADP(BeF3). These data suggest that a low-pH environment might be required for efficient HCV RNA translation or replication, and support a model in which an acidic residue rotates toward the RNA backbone upon ATP binding repelling nucleic acid from the binding cleft.  相似文献   

8.
Summary A microtechnique for the detection of DNA or RNA in small numbers of plant cells (1–50) has been developed using cauliflower mosaic virus (CaMV) infection of turnip as a model system. Both DNA and RNA extracted from 10 mesophyll protoplasts from CaMV-infected plants can be detected by hybridization using a radioactive probe made from cloned CaMV DNA (pCaMV10). No hybridization above background was detected in extracts of protoplasts from uninfected plants. At least 0.15 pg (11 000 molecules) of purified pCaMV10 DNA can be detected. This method is superior to existing macro techniques for nucleic acid detection as smaller amounts of tissue are required and the detection is approximately 100-fold more sensitive. re]19850326 rv]19850530 ac]19850611  相似文献   

9.
Li XM  Gu SS  Zhang SS 《Oligonucleotides》2008,18(3):287-294
A simple and sensitive method for electrochemical detection of DNA was designed. This DNA sensor was based on a "sandwich" detection strategy, which involved a long capture probe DNA immobilized on glassy carbon electrodes that flanked both the reference DNA and target DNA. Electrochemical signals were measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using aquadichloro(benzimidazole)-copper(II), Cu(bzim)(H(2)O)Cl(2), as an electroactive indicator. An improving amount of Cu(bzim)(H(2)O)Cl(2) was interacted with the hybrid DNA via the incorporation of a long-probe DNA and a reference DNA in this sensor. As a result of this effect, this sensor design significantly enhanced the sensitivity. With 48-mer probe DNA and 27-mer reference DNA, the proposed method could be used for detection of 21-mer ssDNA ranging from 1.32 x 10(-7) to 2.52 x 10(-6) M with a detection limit of 2.94 x 10(-8) M. Electrochemical DNA biosensors were also developed using the same long-probe sequence as the target sequence with the novel hybridization indicator, Cu(bzim) (H(2)O)Cl(2). The detection limits for the complementary 21-mer target and 27-mer target were 9.52 x 10(-8) M and 5.81 x 10(-8) M, respectively. The results showed that the sensor with long-probe DNA and reference DNA is far more sensitive than that with nonswitch assay.  相似文献   

10.
A common speed limit for RNA-cleaving ribozymes and deoxyribozymes   总被引:3,自引:0,他引:3  
It is widely believed that the reason proteins dominate biological catalysis is because polypeptides have greater chemical complexity compared with nucleic acids, and thus should have greater enzymatic power. Consistent with this hypothesis is the fact that protein enzymes typically exhibit chemical rate enhancements that are far more substantial than those achieved by natural and engineered ribozymes. To investigate the true catalytic power of nucleic acids, we determined the kinetic characteristics of 14 classes of engineered ribozymes and deoxyribozymes that accelerate RNA cleavage by internal phosphoester transfer. Half approach a maximum rate constant of approximately 1 min(-1), whereas ribonuclease A catalyzes the same reaction approximately 80,000-fold faster. Additional biochemical analyses indicate that this commonly encountered ribozyme "speed limit" coincides with the theoretical maximum rate enhancement for an enzyme that uses only two specific catalytic strategies. These results indicate that ribozymes using additional catalytic strategies could be made that promote RNA cleavage with rate enhancements that equal those of proteins.  相似文献   

11.
Kim KS  Choi WH  Choi BR  Oh S  Yea SS  Yoon MY  Kim DE 《FEBS letters》2007,581(21):4065-4072
Self-replication process of the RNA ligase ribozyme molecules was investigated by using the modified RNA ligase ribozyme under alternating temperature condition that enhances turnover rate of the RNA ligation reaction. In our experiment, the RNA ligase ribozyme system mainly undergoes a cross-catalytic replication process, in which two ribozymes catalyze each other's synthesis from a total of four RNA substrates under alternating temperature condition, resulting in time-dependent accumulation of additional copies of the starting ribozymes in a reaction mixture. The present study demonstrates that cross-catalytic replication in nucleic acids system can be efficiently devised under the alternating temperature condition.  相似文献   

12.
13.
The development of a reliable method of using PCR for detection of Cryptosporidium oocysts in environmental samples with oligonucleotide primers which amplify a portion of the sequence encoding the small (18S) subunit of rRNA producing a 435-bp product was demonstrated. The PCR assay was found to provide highly genus-specific detection of Cryptosporidium spp. after release of nucleic acids from oocysts by a simple freeze-thaw procedure. The assay routinely detected 1 to 10 oocysts in purified oocyst preparations, as shown by direct microscopic counts and by an immunofluorescence assay. The sensitivity of the PCR assay in some seeded environmental water samples was up to 1,000-fold lower. However, this interference was eliminated by either flow cytometry or magnetic-antibody capture. Sensitivity was also improved 10- to 1,000-fold by probing of the PCR product on dot blots with an oligonucleotide probe detected by chemiluminescence. Confirmation of the presence of Cryptosporidium oocysts in water samples from the outbreak in Milwaukee, Wis., was obtained with this technique, and PCR was found to be as sensitive as immunofluorescence for detection of oocysts in wastewater concentrates.  相似文献   

14.
A flow-based immunoassay system utilizing secondary-antibody coated microbeads and Cy5-secondary antibody for signal production was successfully developed to quantitate target bacteria with a kinetic exclusion assay (KinExA 3000 Instrument). It directly measured the concentration of unliganded antibody separated from the equilibrated mixture of antibody and bacteria through a 0.2 microm polyethersulfone membrane, enabling it to quantify the concentration of bacteria. The novel method demonstrated the qualities of rapidness, sensitivity, high accuracy and reproducibility, and ease to perform. Detection of Pseudomonas aeruginosa and Staphylococcus aureus was accomplished with low detection limits of 4.10 x 10(6) and 5.20 x l0(4)cells/mL, respectively, with an assay time of less than 15 min. The working ranges for quantification were 4.10 x l0(6) to 1.64 x l0(10)cells/mL for P. aeruginosa, and 5.20 x l0(4) to 1.04 x l0(9)cells/mL for S. aureus. It yielded an assay with at least 10-fold greater sensitivity than ELISA and could correctly assess the concentration of predominant bacterium spiked in the mixture of P. aeruginosa and S. aureus. With this reliable platform, the average amount of antibody bound by one cell in the maximum capability could be further provided: (1.6-2.5) x l0(5) antibodies for one P. aeruginosa cell and (2.2-2.7) x l0(8) antibodies for one S. aureus cell. The KinExA system is flexible to determine different kinds of bacteria conveniently by using anti-mouse IgG as the same immobilizing agent. However, a higher specificity of the antibodies to the target bacteria will be required for the use of this system with higher detection sensitivity.  相似文献   

15.
The secular trends in the detection rates for cervical intraepithelial neoplasia (CIN) and invasive carcinoma were evaluated for a population lacking a mass screening program. For the period from 1980 through 1987, 185,659 Papanicolaou smears from 176,511 women were examined. The average annual age-adjusted detection rate for invasive cervical cancer declined from 3.7 x 10(-3) in 1980 to 1.4 x 10(-3) in 1987. The rate of cytologic findings consistent with CIN 3 and verified by histology increased from 0.7 x 10(-3) to 2.6 x 10(-3), and the rate of findings consistent with CIN 1 and CIN 2 increased from 4.3 x 10(-3) to 7.2 x 10(-3). The yield of Papanicolaou smear diagnoses consistent with CIN 3 was substantial (more than one case per 1,000) for women up to 60 years old, but was insignificant for older women.  相似文献   

16.
Positions 2-6 of the substrate-binding internal guide sequence (IGS) of the L-21 Sca I form of the Tetrahymena thermophila intron were mutagenized to produce a GN5 IGS library. Ribozymes within the GN5 library capable of efficient cleavage of an 818-nt human immunodeficiency virus type 1 vif-vpr RNA, at 37 degrees C, were identified by ribozyme-catalyzed guanosine addition to the 3' cleavage product. Three ribozymes (IGS = GGGGCU, GGCUCC, and GUGGCU) within the GN5 library that actively cleaved the long substrate were characterized kinetically and compared to the wild-type ribozyme (GGAGGG) and two control ribozymes (GGAGUC and GGAGAU). The two control ribozymes have specific sites within the long substrate, but were not identified during screening of the library. Under single-turnover conditions, ribozymes GGGGCU, GGCUCC, and GUGGCU cleaved the 818-nt substrate 4- to 200-fold faster than control ribozymes. Short cognate substrates, which should be structureless and therefore accessible to ribozyme binding, were cleaved at similar rates by all ribozymes except GGGGCU, which showed a fourfold rate enhancement. The rate of cleavage of long relative to short substrate under single-turnover conditions suggests that GGCUCC and GUGGCU were identified because of accessibility to their specific cleavage sites within the long substrate (substrate-specific effects), whereas GGGGCU was identified because of an enhanced rate of substrate binding despite a less accessible site in the long substrate. Even though screening was performed with 100-fold excess substrate (relative to total ribozyme), the rate of multiple-turnover catalysis did not contribute to identification of trans-cleaving ribozymes in the GN5 library.  相似文献   

17.
Rolling circle amplification (RCA) generates large single-stranded and tandem repeats of target DNA as amplicons. This technique was applied to in situ nucleic acid amplification (in situ RCA) to visualize and count single Escherichia coli cells carrying a specific gene sequence. The method features (i) one short target sequence (35 to 39 bp) that allows specific detection; (ii) maintaining constant fluorescent intensity of positive cells permeabilized extensively after amplicon detection by fluorescence in situ hybridization, which facilitates the detection of target bacteria in various physiological states; and (iii) reliable enumeration of target bacteria by concentration on a gelatin-coated membrane filter. To test our approach, the presence of the following genes were visualized by in situ RCA: green fluorescent protein gene, the ampicillin resistance gene and the replication origin region on multicopy pUC19 plasmid, as well as the single-copy Shiga-like toxin gene on chromosomes inside E. coli cells. Fluorescent antibody staining after in situ RCA also simultaneously identified cells harboring target genes and determined the specificity of in situ RCA. E. coli cells in a nonculturable state from a prolonged incubation were periodically sampled and used for plasmid uptake study. The numbers of cells taking up plasmids determined by in situ RCA was up to 10(6)-fold higher than that measured by selective plating. In addition, in situ RCA allowed the detection of cells taking up plasmids even when colony-forming cells were not detected during the incubation period. By optimizing the cell permeabilization condition for in situ RCA, this method can become a valuable tool for studying free DNA uptake, especially in nonculturable bacteria.  相似文献   

18.
Experiments indicated that nucleic acids can quench the fluorescence of the Eu3+ -2-thenoyltrifluoroacetone (TTA)-1,10-phenanthroline (Phen) system. Based on this, a sensitive method for the determination of nucleic acids was proposed. The experiments indicated that under the optimum conditions, the quenched fluorescence intensity was in proportion to the concentration of nucleic acids in the range 1.0 x 10(-11)-1.0 x 10(-6) g/mL for yeast RNA (yRNA), 5.0 x 10(-11)-5.0 x 10(-7) g/mL for fish sperm (fsDNA) and 1.0 x 10(-10)-1.5 x 10(-6) g/mL for calf thymus DNA (ctDNA). Their detection limits were 3.0 x 10(-12), 4.0 x 10(-12) and 5.0 x 10(-11) g/mL, respectively. Therefore, the proposed method is one of the most sensitive methods available. The interaction between nucleic acids and Eu3+ -TTA-Phen is also discussed.  相似文献   

19.
Widely used nucleic acid assays are poorly suited for field deployment where access to laboratory instrumentation is limited or unavailable. The need for field deployable nucleic acid detection demands inexpensive, facile systems without sacrificing information capacity or sensitivity. Here we describe a novel microarray platform capable of rapid, sensitive nucleic acid detection without specialized instrumentation. The approach is based on a miniaturized lateral flow device that makes use of hybridization-mediated target capture. The miniaturization of lateral flow nucleic acid detection provides multiple advantages over traditional lateral flow devices. Ten-microliter sample volumes reduce reagent consumption and yield analyte detection times, excluding sample preparation and amplification, of <120s while providing sub-femtomole sensitivity. Moreover, the use of microarray technology increases the potential information capacity of lateral flow. Coupled with a hybridization-based detection scheme, the lateral flow microarray (LFM) enables sequence-specific detection, opening the door to highly multiplexed implementations for broad-range assays well suited for point-of-care and other field applications. The LFM system is demonstrated using an isothermal amplification strategy for detection of Bacillus anthracis, the etiologic agent of anthrax. RNA from as few as two B. anthracis cells was detected without thermocycling hardware or fluorescence detection systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号