首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ACETYLCHOLINESTERASE IN DEVELOPING CHICK EMBRYO BRAIN   总被引:1,自引:0,他引:1  
–Acetylcholinesterase has been assayed at different stages of development to see whether changes in the activity of this enzyme are correlated in any way with the ontogenesis of electrical activity in the brain of growing chick embryo. The specific activity of the enzyme was highest in the synaptosomal fraction of the brain. The activity of the enzyme increased progressively with the age of the embryo. There were three isozymic forms of the enzyme in the 6-day-old embryo brain. A new isozyme appeared around the 9th day. The Km values of the enzyme for acetylthiocholine from 6- and 20-day-old embryo brains were 6.5 ± 10-5m and 3.3 ± 10-5m respectively. Enzyme preparations from 6-day-old embryos were found to lose 50 per cent of their activity when heated at 50°C for 10 min. Under similar conditions the loss in activity in 18-day-old embryo brain enzyme was 22 per cent.  相似文献   

2.
—The detailed subcellular distribution and some properties of acetyl-CoA hydrolase were studied in the rat brain. The brain homogenate (S1) hydrolysed acetyl-CoA at a rate of approx 2·3 nmol/min/mg of protein at 37°C. The total activity of acetyl-CoA hydrolase was distributed in the following order: soluble > mitochondrial > microsomal, synaptosomal > myelin fraction. The order of the specific activity of the enzyme was: soluble, microsomal > mitochondrial > synaptosomal > myelin fraction. The synaptic vesicle fraction (D) had relatively high specific activity among the intraterminal particulate fractions, having two or three times higher specific activity than that of the synaptic cytoplasmic membrane fraction (F or G). Attempts to de-occlude acetyl-CoA hydrolase in the particulate fraction showed that only the enzyme activity in the myelin fraction was increased markedly by the treatment with ether or Triton X-100. Lineweaver-Burk plots gave straight lines for each subcellular fraction and apparent Km values for acetyl-CoA were between 0·1 and 0·2 mM. Neither diisopropyl fluorophosphate nor physostigmine at the concentration of 0·1 mm inhibited the enzyme activity.  相似文献   

3.
DEVELOPMENT OF MITOCHONDRIAL PYRUVATE METABOLISM IN RAT BRAIN   总被引:10,自引:6,他引:4  
The activities of a number of mitochondrial enzymes involved in the metabolism of pyruvate during development of the rat brain were investigated. The rates of decarboxylation of [1-14C]pyruvate to 14CO2 via pyruvate dehydrogenase and the fixation of H14CO3? in the presence of pyruvate via pyruvate carboxylase by brain homogenates were very low in newborn rats. These rates increased markedly by about four-fold and 15-fold respectively during 10–35 postnatal days. The rates of the fixation of H14CO3? by cerebral homogenates were supported by the development of the activity of pyruvate carboxylase in rat brain. The activities of citrate synthase, aconitase, NAD-malate dehydrogenase, aspartate aminotransferase, alanine aminotransferase and phosphoenol-pyruvate carboxykinase were very low in the particulate fraction of the newborn rat brain. The activities of all these enzymes increased makedly by about three- to 10-fold during 10–35 days after birth. The activity of mitochondrial phosphoenolpyruvate carboxykinase from rat brain was not precipitated by an antibody prepared against rat liver cytosolic phosphoenolpyruvate carboxykinase suggesting that cerebral mitochondrial enzyme is immunologically different from that of the cytosolic form in hepatocytes. The significance of the development of the cerebral mitochondrial metabolism is discussed in relation to biochemical maturation of the brain.  相似文献   

4.
The combined measurement of MAO A activity (using [3H]5-HT as a specific substrate) and [3H]harmaline binding capacity indicated that the concentration of MAO A in brain was higher in 14-28 day old rats than in adult animals. The turnover rates of this enzyme in the forebrain and the brain stem of young (14-28 day old) and adult rats were calculated by following the recovery of MAO A activity and of [3H]harmaline binding capacity after an acute treatment with pargyline (75mg/kg i.p.). Both the fractional rate constant for MAO A degradation and its synthesis rate per g of fresh tissue were significantly higher in young animals. However, the calculation of the absolute synthesis rates of MAO A per brain area gave very similar values in young and adult animals: 1.3-1.5 × 1013 molecules of MAO A synthesized per day in the forebrain and 2.3-2.9 × 1012 molecules per day in the brain stern. The results illustrate the validity of using [3H]harmaline binding to evaluate possible changes in the turnover rate of MAO A in tissues.  相似文献   

5.
2′,3′-Cyclic-nucleotide-3′-phosphodiesterase activity was examined in several regions of rat brain during development, namely optic nerve, olfactory bulb, cerebrum, cerebellum, midbrain, brain stem, and spinal cord. From 4 to 120 days the total activity increased in all regions, although the specific activity approached a constant value in adults. The developmental profile of the enzyme appeared to correlate with the onset of myelination and with the levels of myelin basic protein as well as the appearance of galactocerebroside sulfotransferase. A correlation coefficient of 0.91 was found between total basic protein, expressed as the per cent of the adult (120 day) value, and total enzyme activity over 12–42 days of age (P < 0.001) from six different brain regions as well as for whole brain. By increasing the sensitivity of the assay with the use of [3H-8]adenosine 2′,3′-cyclic monophosphate, we were able to detect activity at birth in both whole brain and spinal cord.  相似文献   

6.
FORMAMIDASE IN RAT BRAIN   总被引:1,自引:1,他引:0  
Kynurenine formamidase (aryl-formylamine amidohydrolase, EC 3.5.1.9) was found to be present in rat brain and was partially purified and characterized. The partially purified enzyme catalysed the hydrolysis of 5-hydroxyformyl-dl -kynurenine to 5-hydroxy-dl -kynurenine and that of formyl-l -kynurenine to l -kynurenine at similar rates. The apparent Km values of the enzyme for 5-hydroxyformyl-dl -kynurenine and formyl-l -kynurenine were 4.0 ± 10?4 and 1.8 ± 10?4m , respectively. The enzyme was active over a wide pH range (5.5–8.5). The activity was inhibited by low concentrations of Ag+ and Hg2+. The physiological significance of the enzyme is discussed.  相似文献   

7.
The influence of early hypothyroidism on the concentration and biochemical properties of soluble and particulate tubulin from the cerebral cortex and cerebellum was investigated during development in the rat. Cellular soluble tubulin concentration (pmol colchicine bound/μg DNA) was approx 16% lower in both brain areas of hypothyroid animals compared to controls at 25 days of age. No effect of thyroid hormone deficiency was observed when tubulin concentration was expressed in terms of tissue protein or weight. The particulate tubulin concentration was approx 20% lower in the cerebral cortex of 25-day-old hypothyroid rats although the distribution of tubulin between soluble and particulate fractions was similar to controls. The incorporation of [14C]leucine into cerebral cortical tubulin in vitro (c.p.m. in tubulin/c.p.m. in total protein) was not significantly altered by the hormonal deficiency. Thus there was no apparent evidence of a selective defect in tubulin synthesis. Tubulin from hypothyroid rats behaved similarly to control samples with respect to the effects of pharmacological agents and temperature, lability of binding, chromatographic profile and electrophoretic mobility on sodium dodecyl sulfate polyacrylamide gels.  相似文献   

8.
The binding of glutamate decarboxylase (GAD), to phospholipid vesicles (liposomes) in the absence and in the presence of several Ca2+ and Mg2+ concentrations was studied. Phosphatidylcho-line-phosphatidylserine (4:1) liposomes are capable of binding GAD in a Ca2+-dependent manner. The per cent of GAD bound increased from 5 to 65°., in a sigmoid shape with Ca2+ concentrations in the 0.2-4 mm range. Mg2+ also induces GAD binding but is less effective than Ca2+ The Ca2+ -dependent binding of GAD is not the result of unspecific association of protein, since Ca2+ did not promote any binding of choline acetyltransferase or lactate dehydrogenase. Furthermore, the relative specific activity (oo enzyme activity/% protein) of GAD associated to liposomes increases 4-fold from 0 to 2 mm Ca2+. The per cent of GAD bound attains a plateau at a ratio phospholipid/protein of about 1.5. and decreases when the pH increases from 6.5 or 6.8 to 7 or 7.25. Na+ or K+ at a 100mm concentration also induce binding of GAD to liposomes. Phosphatidylcholine liposomes (without phosphatidylserine) practically did not bind GAD at any Ca2+ concentration. The Ca2+-dependent association of GAD to phosphatidylcholine-phosphatidylserine liposomes is very similar to that previously reported using brain membranes, and it correlates also well with the reported Ca2+-dependent aggregation of phosphatidylserine molecules in phospholipid membranes of similar composition. It is concluded that phosphatidylserine is probably involved in the Ca2+-dependent binding of GAD to brain membranes. Phospholipid vesicles seem to be a useful experimental model for studying the mechanisms of this GAD association to membranes and the possible physiological implications of the GAD-Ca2+-membrane interaction regarding the release of newly synthesized GABA from nerve endings.  相似文献   

9.
Abstract— The incubation of brain stem slices from adult rats in a K+-enriched medium containing a 5-HT uptake inhibitor (fluoxetine) significantly increased their capacity to synthesize 5-HT from tryptophan. The K+-induced stimulation of 5-HT synthesis was at least partly dependent on the depletion of the indoleamine in tissues since: (1) a good correlation was found between the respective changes in 5-HT release and synthesis evoked by high K+ concentrations in the presence of various 5-HT uptake inhibitors; (2) the modifications in endogenous 5-HT levels produced by in vim treatments with drugs (reserpine, pargyline) or by incubating slices with 5-HT altered the stimulating effect of high K+ concentrations and fluoxetine on 5-HT synthesis; (3) the replacement of Ca2+ by Co2+ (4 mM) or EGTA (0.1 mM) in the incubating medium completely prevented the increased 5-HT release and synthesis evoked by high K+ concentrations and fluoxetine. The extraction of tryptophan hydroxylase from incubated tissues revealed that the increased 5-HT synthesis occurring in K+-enriched medium was associated with an activation of this enzyme. Kinetic analyses indicated that this activation resulted from an increase in the Vmax of tryptophan hydroxylase, its apparent affinities for both tryptophan and 6-MPH4 being not significantly affected. In contrast to the tryptophan hydroxylase from tissues incubated in normal physiological medium, the activated enzyme from tissues depolarized by K+ was hardly stimulated by Ca2+-mediated phosphorylating conditions. This led to the proposition of a hypothetical model by which the Ca2+ influx produced by the neuronal depolarization would trigger the activity of a Ca2+-dependent protein kinase capable of activating tryptophan hydroxylase. Although this sequence is still largely speculative it must be emphasized that, as expected from such a model, the regional differences in the K+-evoked activation of tryptophan hydroxylase in slices (cerebral cortex > brain stem > spinal cord) were parallel to those of the Ca2+-dependent protein phosphorylation (r= 0.92) and those of the activating effect of phosphorylating conditions on soluble tryptophan hydroxylase (r= 0.96).  相似文献   

10.
—Tryptophan hydroxylase form pig brain has been purified using a method which involved sonic disintegration of a whole homogenate, ammonium sulphate fractionation, hydroxylapatite fractionation, column chromatography on Sephadex G-100 or G-200 and finally electrophoresis on poly-acrylamide gel. The enzyme was stabilized during purification by tryptophan and dithiothreitol. The partially purified enzyme has a molecular weight of 55,000-60,000 as measured by gel-filtration. The Km of the soluble partially purified enzyme was 0-4 mm , which differed significantly from that of the particulate enzyme (0·02mm ). Enzyme activity was not stimulated by ferrous ion. However, it was inhibited by the chelating agents 8-hydroxyquinoline, O-phenanthroline and EDTA. In contrast to dopamine, high concentration of tryptophan (10 mm ), 5-hydroxytryptamine, tryptamine and tyramine at 0-5 mm concentration did not inhibit the enzyme in the presence of dimethyltetrahydropterin (DMPH4). A number of monoamine oxidase inhibitors, phenelzine, pheniprazine and chlorgyline at 1 mm strongly inhibit the formation of 5-hydroxytryptamine. Evidence is presented for the presence of an endogenous inhibitor of tryptophan hydroxylase.  相似文献   

11.
12.
—The oxidation to CO2 and the incorporation of [U-14C]glucose and [U-14C]acetate into lipids by cortex slices from rat brain during the postnatal period were investigated. The oxidation of [U-14C]glucose was low in 2-day-old rat brain, and increased by about two-fold during the 2nd and 3rd postnatal weeks. The oxidation of [U-14C]acetate was increased markedly in the second postnatal week, but decreased to rates observed in 2-day-old rat brain at the time of weaning. Both labeled substrates were readily incorporated into non-saponifiable lipids and fatty acids by brain slices from 2-day-old rat. Their rates of incorporation and the days on which maximum rates occurred were different, however, maximum incorporation of [U-14C]glucose and [U-14]acetate into lipid fractions being observed on about the 7th and 12th postanatal days, respectively. The metabolic compartmentation in the utilization of these substrates for lipogenesis is suggested. The activities of glucose-6-phosphate dehydrogenase, cytosolic NADP-malate dehydrogenase, cytosolic NADP-isocitrate dehydrogenase, ATP-citrate lyase and acetyl CoA carboxylase were measured in rat brain during the postnatal period. All enzymes followed somewhat different courses of development; the activity of acetyl CoA carboxylase was, however, the lowest among other key enzymes in the biosynthetic pathway, and its developmental pattern paralleled closely the fatty acid synthesis from [U-14C]glucose. It is suggested that acetyl CoA carboxylase is a rate-limiting step in the synthesis de novo of fatty acids in developing rat brain.  相似文献   

13.
–Changes in respiratory rate, ubiquinone (Q) redox status, lactate and pyruvate levels in chopped rat telencephalon were studied after cationic stimulation of respiration. When chopped telencephalon was incubated with glucose as substrate, increasing the K+ concentration from 5 mm to 55 mm was associated with a 57% increase in the respiratory rate and a reduction in Q redox status from 76% oxidized to 64% oxidized. Lactate increased by over 200%. Substitution of pyruvate for glucose with 5 mm -K+ resulted in a respiratory rate that was 78% of that seen with glucose and 55 mm -K+. Increasing K + from 5 mm to 55 mm increased the respiratory rate by only 6%, with pyruvate as substrate. Q underwent a reduction that was half that seen with glucose. Ouabain largely prevented the K +-induced increase in respiratory rate with glucose as substrate, but Q was still reduced by 5 percentage points while lactate and pyruvate were unchanged. When respiration was uncoupled with 2,4-dinitrophenol, increasing the K+ concentration from 5 mM to 55 mm had no further effect on any of the metabolic parameters measured. Deletion of Ca2+ from the medium resulted in an increase in respiration of 18%, but neither the Q redox status nor the levels of lactate or pyruvate were significantly changed. The results demonstrate that the K+-induced stimulation of respiration results from a coordinated metabolic response whereas the stimulation of respiration associated with Ca2+ depletion is probably mediated through ion fluxes at the cell membrane and activation of Na+-K+-activated ATPases.  相似文献   

14.
PROPERTIES AND REGIONAL DISTRIBUTION OF HISTIDINE DECARBOXYLASE IN RAT BRAIN   总被引:17,自引:14,他引:3  
—Properties of the histamine-forming enzyme in rat brain were studied, utilizing a sensitive fluorometric assay. The optimum pH was related to substrate concentration and found to be6·4 at 10?2m -histidine; the apparent Km was about 4·10?4m ; enzyme activity was inhibited by α-hydrazino -histidine and brocresine but was not affected by α-methyl DOPA or benzene. These different data suggest that the 'specific’histidine decarboxylase (EC 4.1.1.22)—and not the aromatic l -aminoacid decarboxylase—is involved. Determination of enzyme activity and histamine level in different areas of the rat brain revealed important regional differences, the two values being roughly parallel.  相似文献   

15.
Addition of norepinephrine or isoproterenol to primary cultures started from the brains of 1-3 day old rats caused up to 200-fold increases in cAMP levels, which reached a maximum by 5-10 min and then declined. This effect was studied in detail for norepinephrine. The rise in cAMP levels was followed by morphological changes, in which up to 65% of the cells exhibited an astrocyte-like morphology, and 2-3 fold increases in carbonic anhydrase and (Na+-K+) ATPase activities. However, morphological transformation also occurred after much smaller increases in total cAMP levels. These effects on cell morphology and enzyme activities reached a maximum 1-2 h after addition of norepinephrine and then declined. Carbonic anhydrase activity was found both in the particulate and post 100,000 g supernatant fractions from homogenates of these cultured cells, and in the latter case the activity was activated 3-fold by addition of cAMP. The significance of these obscrvations on the cellular localization of, and functional role for similar increases in cAMP in brain tissue is discussed.  相似文献   

16.
The effects of neonatal hypothyroidism on electrolyte contents and the Na+ and K+ activated ATPase system was studied in the cerebral cortex and cerebellum of the developing rat. Neonatal hypothyroidism increased Na+ and CI? contents and decreased K+ and Mg2+ contents in both brain areas. Hypothyroidism also resulted in a decrease in the specific activity of the Na-K ATPase extracted by deoxycholate treatment from brain homogenate as well as in the specific activity of this enzyme in the heavy microsomal fraction. The decrease in Mg2+ content and ATPase activity is discussed in relation to the changes occurring in Na+ and K+. Both enzymic and ionic changes may underlie the biochemical and physiological abnormalities observed when the brain is deprived of thyroxine at critical stages of its development.  相似文献   

17.
Abstract— D-β-hydroxybutyrate (β-OHB) was compared to glucose as a precursor for brain amino acids during rat development. In the first study [3-14C]β-OHB or [2-14C]glucose was injected subcu-taneously (01 μCi/g body wt) into suckling rats shortly after birth and at 6. 11, 13, 15 and 21 days of age. Blood and brain tissue were obtained 20 min later after decapitation. The specific activity of the labelled precursor in the blood and in the brain tissue was essentially the same for each respective age suggesting that the labelled precursor had equilibrated between the blood and brain pools before decapitation. [3-14C]β-OHB rapidly labelled brain amino acids at all ages whereas [2-14C]glucose did not prior to 15 days of age. These observations are consistent with a maturational delay in the flux of metabolites through glycolysis and into the tricarboxylic acid cycle. Brain glutamate, glutamine, asparate and GABA were more heavily labelled by [3-14C]β-OHB from birth-15 days of age whereas brain alanine was more heavily labelled by [2-14C]glucose at all ages of development. The relative specific activity of brain glutamine/glutamate was less than one at all ages for both labelled precursors suggesting that β-OHB and glucose are entering the‘large’glutamate compartment throughout development. In a second study, 6 and 15 day old rats were decapitated at 5 min intervals after injection of the labelled precursors to evaluate the flux of the [14C]label into brain metabolites. At 6 days of age, most of the brain acid soluble radioactivity was recovered in the glucose fraction of the [2-,4C]glucose injected rats with 72, 74, 65 and 63% after 5, 10, 15 and 20 min. In contrast, the 6 day old rats injected with [3-14C]β-OHB accumulated much of the brain acid soluble radioactivity in the amino acid fraction with 22, 47, 57 and 54% after 5, 10, 15 and 20 min. At 15 days of age the transfer of the [14C]label from [2-14C]glucose into the brain amino acid fraction was more rapid with 29, 40, 45, 61 and 73% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. There was almost quantitative transfer of [14C]label into the brain amino acids of the 15-day-old [3-14C]β-OHB injected rats with 66, 89, 89, 89 and 90% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. The calculated half life for /?-OHB at 6 days was 19 8 min and at 15 days was 12-2 min. Surprisingly, the relative specific activity of brain GABA/glutamate was lower at 15 days of age in the [3-14C]β-OHB injected rats compared to the [2-14C]glucose injected rats despite a heavier labelling of brain glutamate in the [3-14C]β-OHB injected group. We interpreted these data to mean that β-OHB is a less effective precursor for the brain glutamate ‘subcompartment’ which is involved in the synthesis of GABA.  相似文献   

18.
Abstract— An assay system for the measurement of triphosphoinositide phosphodiesterase in homogenates of rat brain is described. With triphosphoinositide (TPI) as substrate, and in the presence of 0·1 m -KCI and saturating amounts of diethyl ether, the activity of phosphodiesterase in myelinated brain was 400–500 μmoles of TPI hydrolysed per g wet wt. per hr. One quarter of the adult level of the enzyme was present in rat brain one day after birth, with the remainder being added prior to and during the early stages of myelination. On subfractionation of brain homogenates, substantial activity of the enzyme was located in the soluble portion and in the paniculate fractions enriched in myelin and synaptosomes. The enzyme associated with the particulate fractions could not be detached from the membranes by any of several methods employed. There was a rough correlation between distribution of phosphodiesterase and that of 5'-nucleotidase, an enzyme associated with plasma membrane in a number of tissues. Some implications of the results are discussed.  相似文献   

19.
The ontogeny of brain creatine kinase (CK) was studied during chick embryo development. The cytosolic activity increased 270% in 10 h from the 2nd to the 3rd days of incubation; this was followed by a plateau phase throughout development and at the end of incubation there appeared to be another increase of cytosolic and mitochondrial CK activities. Therefore, early embryonic chick brain CK is another‘constitutive’enzyme like the early embryonic chick heart CK since creatine has not been enzymatically detected in the embryo until day 4 of incubation. Insulin does not appear to stimulate the early increase of brain CK activity since the hormone is not present in the embryo until day 5 of incubation. It is likely that CK increase is associated with neuronal multiplication at early stages and possibly to neuronal maturation before hatching.  相似文献   

20.
—Rat brain contains all three of the enzymes required for de novo synthesis of the methyl group of methionine (serine transhydroxymethylase, methylene reductase, and [B12]transmethylase) in activities comparable to those found in liver and kidney. The activities of methylene reductase in female kidney, and of [B12]transmethylase in female brain and kidney, are higher than in the corresponding male tissues. Liver and kidney extracts contain an inhibitor of methylene reductase not present in brain extracts. This inhibitor differs from S-adenosylmethionine (SAM), which also inhibits methylene reductase in both liver and brain homogenates. The administration of l -DOPA to rats, which has been previously shown to deplete brain S-adenosylmethionine, also reduces the activity of brain [B12]transmethylase if assayed without added SAM. Since SAM is required for activity of this enzyme, its decreased activity probably results from the decline in brain SAM concentration. De now synthesis of methyl groups could be a mechanism by which the brain maintains its level of methionine in the face of increased methyl group utilization after administration of l -DOPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号