首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circadian variations in alpha-melanocyte-stimulating hormone (alpha-MSH) content of discrete hypothalamic areas of the male rat were observed either with radioimmunoassay or bioassay. In the medial basal hypothalamus and preoptic area the alpha-MSH content increased sharply between 02.00 and 06.00 h, showing the highest concentration at 06.00 h. In contrast, no significant changes in alpha-MSH content were detected in the lateral hypothalamus during a 24-hour period. Pituitary alpha-MSH also showed a diurnal variation which was different from that in the two hypothalamic areas. The finding that alpha-MSH values in the brain are maximal during the activity period of the rat is in agreement with results demonstrating a role of alpha-MSH in behaviour and locomotor activity.  相似文献   

2.
Met-Enkephalin content of the anterior hypothalamic-preoptic area, medial basal hypothalamus, anterior pituitary, intermediate and posterior pituitary was measured using a specific radioimmunoassay. Met-Enkephalin content of the anterior hypothalamic-preoptic area, medial basal hypothalamus and anterior pituitary was very high on the morning of proestrus but decreased on the afternoon of proestrus and on estrus. The content of met-Enkephalin was more variable in the anterior pituitary than in the anterior hypothalamic-preoptic area and medial basal hypothalamus during the estrous cycle. The results suggest that the met-Enkephalin may be involved in regulating the hypothalamo-hypophyseal function during estrous cycle in the rat.  相似文献   

3.
Beta-endorphin concentrations have been evaluated in the hypothalamus, pituitary lobes and plasma after 1-and 3-week treatment with 2-Br-alpha-ergocriptine or lisuride, two potent dopaminergic drugs. Hypothalamic beta-endorphin concentrations were significantly decreased after the administration of the dopaminergic agents for 1 or 3 weeks. Similarly, beta-endorphin concentrations decreased in the neurointermediate lobe and plasma. After gel chromatography, it appeared that in the anterior pituitary, beta-lipotropin concentrations were unchanged or lightly increased concomitantly with a decrease of beta-endorphin. Our data indicate that, both in the hypothalamus and the neurointermediate pituitary lobe, beta-endorphin is under an inhibitory dopaminergic tone. The latter may also play a role in inhibiting beta-endorphin cleavage from beta-lipotropin in the anterior pituitary.  相似文献   

4.
5.
Seasonal changes in the hypothalamic-hypophyseal axis were investigated using tissue from 49 light-horse mares, of mixed breeding. Hypothalamic and pituitary tissues were collected at 5 intervals throughout the years 1981 and 1982, representing midbreeding season (July, n = 10), transition out of the breeding season (October, n = 11), midanestrus (December, n = 8), transition into the breeding season (March, n = 10), and again in the following midbreeding season (July, n = 10). The hypothalamic region was dissected into preoptic area, body and median eminence. Gonadotropin-releasing hormone (GnRH) was extracted from hypothalamic samples with methanol-formic acid and quantified by radioimmunoassay. The anterior pituitary was homogenized and receptors for GnRH were quantified in a crude membrane fraction. Concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in the resulting supernatant. Content of GnRH in each of the 3 hypothalamic areas varied with season (P less than 0.01) and was lowest during midanestrus (P less than 0.05). There was no effect of season (P greater than 0.01) on either concentration or total number of receptors for GnRH, or concentration of FSH in the anterior pituitary. Concentrations of LH in the anterior pituitary varied with season (P less than 0.001). Means (+/- SEM) for the 5 collection times were 15.5 +/- 2.7, 9.7 +/- 2.4, 2.3 +/- 0.5, 2.7 +/- 0.4 and 11.7 +/- 1.5 microgram LH/mg anterior pituitary, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Reverse-phase high performance liquid chromatography and radioimmunoassay were used to characterize alpha-melanocyte-stimulating hormone (alpha-MSH)-like peptides in rat pancreas. Relative to synthetic alpha-MSH standards, serial dilutions of pancreas extracts showed parallel and concentration dependent displacement of (125I) alpha-MSH from alpha-MSH antibody. Chromatographic separation revealed immunoreactive material coeluting with synthetic N,O-diacetyl alpha-MSH, which accounted for 78% of total alpha-MSH materials in this tissue. The remainder of immunoreactive alpha-MSH coeluted with synthetic alpha-MSH, desacetyl alpha-MSH, or their methionine sulfoxides. In contrast with anterior pituitary, it appears that biosynthetic processing of alpha-MSH from pro-opiomelanocortin (POMC) may be similar in rat pancreas and pituitary intermediate lobe, since their relative alpha-MSH immunoreactive elution profiles were similar. These findings support the hypothesis of tissue specific regulation of biosynthetic processing of POMC.  相似文献   

7.
The concentration of ACTH in extracts of rat anterior pituitary was measured by both radioimmunoassay and bioassay at different stages following adrenalectomy. Both types of ACTH activity decreased the day immediately following adrenalectomy but increased gradually afterwards. Immunological ACTH activity increased to 250% of the control value and biological ACTH activity increased to 490% of control value 3 weeks after adrenalectomy. The increase in biological ACTH activity occurred earlier, and the rate of increase was greater, than that of the immunological ACTH activity. The distributions of molecular weight forms of ACTH in extracts of anterior pituitary lobes was determined by gel filtration. Three molecular weight forms of immunoassayable ACTH were detected. Biological ACTH activity appeared in the 2nd and the 3rd peaks. A striking change was observed after adrenalectomy in the distribution of biologically active forms of ACTH. The ratio of biological ACTH activity to immunological ACTH activity in each peak changed at various stages after adrenalectomy. This indicated the heterogenous nature of the ACTH included in each peak. At 2 and again at 3 weeks, biological activity markedly increased until it exceeded the immunological ACTH activity in the 2nd peak. Dexamethasone had little influence on the elution profile of either immunoassayable and biologically active ACTH in gel filtration. Adrenalectomy may possibly have an effect on the intracellular posttranslational processing of ACTH precursors which leads to the development of biological ACTH activity.  相似文献   

8.
The effects of neurotensin on the activity of hypothalamic tuberoinfundibular and periventricular-hypophysial dopaminergic (DA) neurons, and on the secretion of pituitary hormones that are tonically regulated by these neurons (i.e. prolactin and alpha-melanocyte-stimulating hormone [alpha MSH], respectively) were examined in estrogen-primed ovariectomized rats. The activity of tuberoinfundibular and periventricular-hypophysial DA neurons was estimated by measuring concentrations of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the terminals of these neurons in the median eminence and intermediate lobe of the posterior pituitary, respectively. Intracerebroventricular administration of neurotensin caused a dose- and time-related increase in DOPAC concentrations in both the median eminence and intermediate lobe, and a concurrent decrease in plasma levels of prolactin and alpha MSH. These results suggest that neurotensin-induced inhibition of secretion of prolactin and alpha MSH from the pituitary may be due to the stimulatory action of this neuropeptide on the release of dopamine from tuberoinfundibular and periventricular-hypophysial neurons.  相似文献   

9.
The distribution of melanin-concentrating hormone (MCH) in the central nervous system of the dogfish Scyliorhinus canicula was determined by indirect immunofluorescence and peroxidase-anti-peroxidase techniques, using an antiserum raised against synthetic salmon MCH. Three groups of MCH-positive cell bodies were localized in the posterior hypothalamus. The most prominent cell group was detected in the nucleus sacci vasculosi. Scattered MCH-immunoreactive cells were observed in the nucleus tuberculi posterioris and in the nucleus lateralis tuberis. At the pituitary level, the caudal part of the median lobe of the pars distalis contained strongly MCH-positive perikarya. Some of these cells were liquor-contacting-type. Immunoreactive fibers originating from the hypothalamic perikarya projected throughout the dorsal wall of the posterior hypothalamus. Positive fibers were also detected within the thalamus and the central gray of the mesencephalon. The distribution of MCH-containing neurons was compared to that of alpha-MSH-immunoreactive elements using consecutive, 5-micron thick sections. Both MCH- and alpha-MSH-immunoreactive peptides were found in the same neurons of the nucleus sacci vasculosi. These data suggest that MCH and alpha-MSH, two neuropeptides which exert antagonistic activities on skin melanophores, may also act in a coordinate manner in the central nervous system of cartilaginous fish.  相似文献   

10.
11.
Homogenates of male rat hypothalami were fractionated by means of differential centrifugation, and α-melanocyte-stimulating hormone (α-MSH) in the various fractions was quantified by radioimmunoassay. Of the total quantity of α-MSH in the homogenate, 36% was recovered in the 11,500 g pellet and 31% sedimented between 11,500 and 105,000 g. α-MSH was not detected in the 105,000 g supernatant fluid. When the 900 g supernatant fluid was fractionated on continuous sucrose density gradients at non-equilibrium conditions, two populations of particles containing α-MSH were observed. When fractionated at equilibrium conditions, the two populations were recovered in a single band. These sedimentation characteristics indicate that the particles that contain α-MSH differ in size but are similar in density. After hypo-osmotic shock, the large particles containing α-MSH were not demonstrable, whereas the small particles appeared to be resistant to such treatment. In their sedimentation, the particles containing α-MSH were indistinguishable from particles containing thyrotropin releasing hormone (TRH) but were separable from those that contained luteinizing hormone releasing hormone (LHRH). It is suggested that the large particles containing α-MSH are synaptosomes.  相似文献   

12.
Circulating levels and tissue content of alpha-MSH were measured on the morning of various days of the estrous cycle, and on the afternoon of proestrus in freely moving conscious rats. No surges of alpha-MSH were detected by RIA in the morning of various days of the cycle. The neurointermediate lobe content of alpha-MSH was slightly elevated on diestrus 1 as compared to the levels on diestrus 11 and proestrus but not to estrous levels. No changes in alpha-MSH content were detected in the anterior pituitary, the median eminence, mediobasal hypothalamus and the preoptic area at various stages of the estrous cycle. Plasma alpha-MSH levels were slightly elevated at 1500 hr of proestrus which was followed three hours later by a decline. This profile of plasma alpha-MSH on the afternoon of proestrus was reproduced by the SC administration of estradiol benzoate to long-term ovariectomized rats. These data suggest that, contrary to the results obtained by bioassay of alpha-MSH no surges of alpha-MSH occur on any day of the cycle, although a slight elevation on the afternoon of proestrus was detected. The altered pattern of release of this peptide on the afternoon of proestrus may be induced by estrogen.  相似文献   

13.
D W Young  C A Zerbe  R J Kemppainen 《Peptides》1992,13(6):1061-1066
Reverse-phase high pressure liquid chromatography (HPLC) and radioimmunoassay (RIA) were used to determine the distribution of naturally occurring forms of alpha-melanocyte-stimulating hormone (alpha-MSH) in acid extracts of pars intermedia (PI) and anterior lobe (AL) tissue from canine and rat pituitary. Similarly, intracellular and secreted forms of alpha-MSH were determined using cultured canine PI and AL cells. Rat PI tissue contained predominantly diacetyl-alpha-MSH, while monoacetyl-alpha-MSH was the most abundant form in canine PI. In both canine and rat AL tissue extracts desacetyl-alpha-MSH was the major form of alpha-MSH. The profile of alpha-MSH contained in and secreted into culture medium by canine PI cells was found to be very similar to that in PI tissue extracts. The proportion of monoacetyl-alpha-MSH and diacetyl-alpha-MSH secreted by cultured canine AL cells and contained in extracts of AL cells in culture, however, was much higher than that in tissue extracts. These results indicate that in the dog, as in all other mammalian species studied, acetylated forms of alpha-MSH predominate in PI tissue, while nonacetylated alpha-MSH is the major form in AL tissue. It appears, however, that acetylation of alpha-MSH may occur in cultured canine AL cells, possibly as a result of the absence of factors that normally inhibit acetyltransferase in vivo or as a consequence of culture conditions.  相似文献   

14.
N Kato  T Higuchi  H G Friesen  J A Wada 《Life sciences》1983,32(21):2415-2422
A possible contribution of brain beta-endorphin and somatostatin to the epileptogenicity established by amygdaloid kindling was investigated in rats. Fourteen male rats were chronically implanted with electrodes placed bilaterally into the amygdala. The rats received 1 sec of electrical stimulation to the left amygdala each day. Generalized seizures were observed on average 10 days after initiation of kindling and the electrical stimulation was continued up to twenty-one days. Two months after the completion of the kindling procedure, each kindled and control rat was killed by microwave irradiation and the brains were dissected on ice into thirteen subregions. Each region was homogenized and centrifuged twice in 0.1 N acetic acid. The supernatant extracts were decanted and stored at - 20 degrees C until assay. Immunoreactive beta-endorphin and somatostatin were measured by radioimmunoassays. There were no significant differences in brain beta-endorphin contents between the two groups. In kindled rats, immunoreactive somatostatin was increased significantly in amygdala, sensorimotor, piriform, and entorhinal cortex. The results suggest that changes in somatostatin may be associated with epileptic susceptibility induced by the electrical kindling procedure.  相似文献   

15.
alpha-Melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropin (ACTH) immunoreactivity (IR) was measured in the blood of 22 healthy women with normal ovulatory process in the early and late follicular (near to ovulation) phases and in the early luteal phase of the menstrual cycle. Plasma alpha-MSH IR ranged from undetectable values to 81.3 pg/ml, the highest levels being found in the late follicular phase (15.52 +/- 4.16 pg/ml). In contrast, plasma ACTH IR was always detectable (range: 18.5-63.2 pg/ml), but its concentration did not differ significantly between the 3 phases of the menstrual cycle. High-pressure liquid chromatography fractionation of Sep pak C18-purified alpha-MSH IR revealed in all 3 phases the presence of 3 major peaks of alpha-MSH IR, coeluting with desacetyl-alpha-MSH, alpha-MSH and diacetyl-alpha-MSH, respectively. The most abundant peak always coeluted with authentic desacetyl-alpha-MSH, and the ratio between this deacetylated and the other 2 acetylated forms was similar in the 2 follicular phases (1:1.25 and 1:1.16 in the early and late phase, respectively), but significantly different in the luteal phase (1:0.48). The fluctuations in plasma concentration of the above MSH-related peptides suggest that different rates of alpha-MSH acetylation and release take place in the pituitary gland depending on the phase of the menstrual cycle.  相似文献   

16.
alpha-Melanocyte-stimulating hormone (alpha-MSH) appears to play a tonic inhibitory role in feeding and energy storage. MTII, a specific synthetic MC3-R/MC4-R agonist, has similar effects on feeding in rats. The current studies demonstrate that PVN administration of alpha-MSH or MTII decreases nocturnal and NPY-stimulated food intake without causing aversive effects. Co-administration with NPY of 600 pmol alpha-MSH or 1 pmol MTII into the PVN caused a significant decrease in NPY-induced feeding. PVN administration of MTII or alpha-MSH at doses effective to suppress feeding did not cause conditioned taste aversion (CTA). ICV administration of alpha-MSH, however, did cause weak CTA. These results indicate that the potent effects on feeding of MC3-R and MC4-R agonists when injected into the PVN are not due to aversive effects.  相似文献   

17.
18.
19.
The structure of alpha-melanocyte-stimulating hormone (alpha-MSH) has been determined in the pars intermedia of the frog Rana ridibunda. Pulse-chase labeling of frog neurointermediate lobes with selective amino acids revealed that the composition of frog alpha-MSH is similar to that of alpha-MSH from all mammalian species yet studied. Tryptic mapping of nexly synthetized alpha-MSH generated two fragments with the following amino acid composition: (T1) Trp, Pro, Lys, Gly, Val and (T2) Tyr, Arg, Phe, His, Ser, Glu. Concurrently, alpha-MSH was purified from 100 neurointermediate lobes to apparent homogeneity by reverse-phase HPLC. The sequence of the peptide determined by automated Edman degradation was Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val. The structure of frog alpha-MSH is thus identical to mammalian des-N alpha-acetyl alpha-MSH and differs from the sequence of toad (Xenopus laevis) alpha-MSH only by the first residue (Ser instead of Ala). These results confirm that the sequence of alpha-MSH has been highly preserved during evolution.  相似文献   

20.
Alpha-melanocyte-stimulating hormone (alpha-MSH), one of several peptide hormones originating in the intermediate lobe of the pituitary as proopiomelanocortin, was discovered in bovine pituitary intraglandular colloid by using radioimmunoassay. The quantity of alpha-MSH varied from 5 to 368 micrograms/mg protein in the three pools. The importance of this finding is discussed in light of the possibility that the colloid is a transport medium for alpha-MSH and other intermediate lobe hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号