首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Epithelial tubes are a key component of organs and are generated from cells with distinct apico-basolateral polarity. Here, we describe a novel function during tubulogenesis for ZEN-4, the Caenorhabditis elegans ortholog of mitotic kinesin-like protein 1 (MKLP1), and CYK-4, which contains a RhoGAP (GTPase-activating protein) domain. Previous studies revealed that these proteins comprise centralspindlin (a complex that functions during mitosis to bundle microtubules), construct the spindle midzone, and complete cytokinesis. RESULTS: Our analyses demonstrate that ZEN-4/MKLP1 functions postmitotically to establish the foregut epithelium. Mutants that lack ZEN-4/MKLP1 express polarity markers but fail to target these proteins appropriately to the cell cortex. Affected proteins include PAR-3/Bazooka and PKC-3/atypical protein kinase C at the apical membrane domain, and HMR-1/cadherin and AJM-1 within C. elegans apical junctions (CeAJ). Microtubules and actin are disorganized in zen-4 mutants compared to the wild-type. CONCLUSION: We suggest that ZEN-4/MKLP1 and CYK-4/RhoGAP regulate an early step in epithelial polarization that is required to establish the apical domain and CeAJ.  相似文献   

2.
Cell division is finely controlled by various molecules including small G proteins and kinases/phosphatases. Among these, Aurora B, RhoA, and the GAP MgcRacGAP have been implicated in cytokinesis, but their underlying mechanisms of action have remained unclear. Here, we show that MgcRacGAP colocalizes with Aurora B and RhoA, but not Rac1/Cdc42, at the midbody. We also report that Aurora B phosphorylates MgcRacGAP on serine residues and that this modification induces latent GAP activity toward RhoA in vitro. Expression of a kinase-defective mutant of Aurora B disrupts cytokinesis and inhibits phosphorylation of MgcRacGAP at Ser387, but not its localization to the midbody. Overexpression of a phosphorylation-deficient MgcRacGAP-S387A mutant, but not phosphorylation-mimic MgcRacGAP-S387D mutant, arrests cytokinesis at a late stage and induces polyploidy. Together, these findings indicate that during cytokinesis, MgcRacGAP, previously known as a GAP for Rac/Cdc42, is functionally converted to a RhoGAP through phosphorylation by Aurora B.  相似文献   

3.
Cytokinesis in metazoan cells requires a set of antiparallel microtubules that become bundled upon anaphase onset to form a structure known as the central spindle. Bundling of these microtubules requires a protein complex, centralspindlin, that consists of the CYK-4/MgcRacGAP Rho-family GTPase-activating protein and the ZEN-4/MKLP1 kinesin-6 motor protein. Centralspindlin, but not its individual subunits, is sufficient to bundle microtubules in vitro. Here, we present a biochemical and genetic dissection of centralspindlin. We show that each of the two subunits of centralspindlin dimerize via a parallel coiled coil. The two homodimers assemble into a high-affinity heterotetrameric complex by virtue of two low-affinity interactions. Conditional mutations in the regions that mediate complex assembly can be readily suppressed by numerous second site mutations in the interacting regions. This unexpected plasticity explains the lack of primary sequence conservation of the regions critical for this essential protein-protein interaction.  相似文献   

4.
Large tumor suppressor 1 and 2 (Lats1/2) regulate centrosomal integrity, chromosome segregation and cytokinesis. As components of the centralspindlin complex, the kinesin-like protein CHO1 and its splicing variant MKLP1 colocalize with chromosome passenger proteins and GTPases and regulate the formation of the contractile ring and cytokinesis; however, the regulatory mechanisms of CHO1/MKLP1 remain elusive. Here, we show that Lats1/2 phosphorylate Ser716 in the F-actin-interacting region of CHO1, which is absent in MKLP1. Phosphorylated CHO1 localized to the centrosomes and midbody, and the actin polymerization factor LIM-kinase 1 (LIMK1) was identified as its binding partner. Overexpression of constitutively phosphorylated and non-phosphorylated CHO1 altered the mitotic localization and activation of LIMK1 at the centrosomes in HeLa cells, leading to the inhibition of cytokinesis through excessive phosphorylation of Cofilin and mislocalization of Ect2. These results suggest that Lats1/2 stringently control cytokinesis by regulating CHO1 phosphorylation and the mitotic activation of LIMK1 on centrosomes.  相似文献   

5.
BACKGROUND: The Aurora/Ipl1p-related kinase AIR-2 is required for mitotic chromosome segregation and cytokinesis in early Caenorhabditis elegans embryos. Previous studies have relied on non-conditional mutations or RNA-mediated interference (RNAi) to inactivate AIR-2. It has therefore not been possible to determine whether AIR-2 functions directly in cytokinesis or if the cleavage defect results indirectly from the failure to segregate DNA. One intriguing hypothesis is that AIR-2 acts to localize the mitotic kinesin-like protein ZEN-4 (also known as CeMKLP1), which later functions in cytokinesis. RESULTS: Using conditional alleles, we established that AIR-2 is required at metaphase or early anaphase for normal segregation of chromosomes, localization of ZEN-4, and cytokinesis. ZEN-4 is first required late in cytokinesis, and also functions to maintain cell separation through much of the subsequent interphase. DNA segregation defects alone were not sufficient to disrupt cytokinesis in other mutants, suggesting that AIR-2 acts specifically during cytokinesis through ZEN-4. AIR-2 and ZEN-4 shared similar genetic interactions with the formin homology (FH) protein CYK-1, suggesting that AIR-2 and ZEN-4 function in a single pathway, in parallel to a contractile ring pathway that includes CYK-1. Using in vitro co-immunoprecipitation experiments, we found that AIR-2 and ZEN-4 interact directly. CONCLUSIONS: AIR-2 has two functions during mitosis: one in chromosome segregation, and a second, independent function in cytokinesis through ZEN-4. AIR-2 and ZEN-4 may act in parallel to a second pathway that includes CYK-1.  相似文献   

6.
Src family non-receptor-type tyrosine kinases regulate a wide variety of cellular events including cell cycle progression in G(2)/M phase. Here, we show that Src signaling regulates the terminal step in cytokinesis called abscission in HeLa cells. Abscission failure with an unusually elongated intercellular bridge containing the midbody is induced by treatment with the chemical Src inhibitors PP2 and SU6656 or expression of membrane-anchored Csk chimeras. By anti-phosphotyrosine immunofluorescence and live cell imaging, completion of abscission requires Src-mediated tyrosine phosphorylation during early stages of mitosis (before cleavage furrow formation), which is subsequently delivered to the midbody through Rab11-driven vesicle transport. Treatment with U0126, a MEK inhibitor, decreases tyrosine phosphorylation levels at the midbody, leading to abscission failure. Activated ERK by MEK-catalyzed dual phosphorylation on threonine and tyrosine residues in the TEY sequence, which is strongly detected by anti-phosphotyrosine antibody, is transported to the midbody in a Rab11-dependent manner. Src kinase activity during the early mitosis mediates ERK activation in late cytokinesis, indicating that Src-mediated signaling for abscission is spatially and temporally transmitted. Thus, these results suggest that recruitment of activated ERK, which is phosphorylated by MEK downstream of Src kinases, to the midbody plays an important role in completion of abscission.  相似文献   

7.
8.
Tissue homeostasis of skin is sustained by epidermal progenitor cells localized within the basal layer of the skin epithelium. Post‐translational modification of the proteome, such as protein phosphorylation, plays a fundamental role in the regulation of stemness and differentiation of somatic stem cells. However, it remains unclear how phosphoproteomic changes occur and contribute to epidermal differentiation. In this study, we survey the epidermal cell differentiation in a systematic manner by combining quantitative phosphoproteomics with mammalian kinome cDNA library screen. This approach identified a key signaling event, phosphorylation of a desmosome component, PKP1 (plakophilin‐1) by RIPK4 (receptor‐interacting serine–threonine kinase 4) during epidermal differentiation. With genome‐editing and mouse genetics approach, we show that loss of function of either Pkp1 or Ripk4 impairs skin differentiation and enhances epidermal carcinogenesis in vivo. Phosphorylation of PKP1's N‐terminal domain by RIPK4 is essential for their role in epidermal differentiation. Taken together, our study presents a global view of phosphoproteomic changes that occur during epidermal differentiation, and identifies RIPK‐PKP1 signaling as novel axis involved in skin stratification and tumorigenesis.  相似文献   

9.
The functional association of NPM1 with Aurora kinases is well documented. Surprisingly, although NPM1 is a well characterized phosphoprotein, it is unknown whether it is a substrate of Aurora kinases. We have found that Aurora kinases A and B can phosphorylate NPM1 at a single serine residue, Ser125, in vitro and in vivo. Phosphorylated-S125-NPM1 (pS125-NPM1) localizes to the midbody region during late cytokinesis where it colocalizes with Aurora B. The overexpression of mutant (S125A) NPM1 resulted in the deregulation of centrosome duplication and mitotic defects possibly due to cytokinesis failure. These data suggest that Aurora kinase B-mediated phosphorylation of NPM1 plays a critical role during mitosis, which could have wider implications in oncogenesis.  相似文献   

10.
Disruption of the BRCA2 tumor suppressor is associated with structural and numerical chromosomal defects. The numerical abnormalities in BRCA2-deficient cells may partly result from aberrations in cell division caused by disruption of BRCA2 during cytokinesis. Here we show that BRCA2 is a component of the midbody that is recruited through an interaction with Filamin A actin-binding protein. At the midbody, BRCA2 influences the recruitment of endosomal sorting complex required for transport (ESCRT)-associated proteins, Alix and Tsg101, and formation of CEP55-Alix and CEP55-Tsg101 complexes during abscission. Disruption of these BRCA2 interactions by cancer-associated mutations results in increased cytokinetic defects but has no effect on BRCA2-dependent homologous recombination repair of DNA damage. These findings identify a specific role for BRCA2 in the regulation of midbody structure and function, separate from DNA damage repair, that may explain in part the whole-chromosomal instability in BRCA2-deficient tumors.  相似文献   

11.
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurologic disorder,whose symptoms include cerebellar ataxia and epilepsy. The disease is caused by ATTCT expansion in the ATXN10 gene, which encodes the Ataxin-10 protein. Here we identified polo-like kinase 1 (Plk1) as one of Ataxin-10's binding partners. We show that epitope-tagged Ataxin-10 and Plk1 coimmunoprecipitate, and Plk1 phosphorylates Ataxin-10 at S77 and T82 in vitro. Knockdown of ATXN10 with siRNA in HeLa cells results in cytokinesis defects-multinucleation, which are rescued by wild-type Ataxin-10, but not the phosphor-deficient 2A mutant. Phosphorylation-specific antibodies towards pS77 detect specific signals at the midbody. Like the knockdown, overexpression of the 2A mutant generates multinucleated cells and the 2A mutant shows decreased interaction with the Plk1 polo-box domain. In addition, we found that Ataxin-10 is ubiquitinated, and is subject to proteasome-dependent degradation, which is delayed in the 2A mutant. We propose a model in which Plk1 phosphorylation of Ataxin-10 influences its degradation and cytokinesis, which may provide mechanistic insight to SCA10's pathogenesis.  相似文献   

12.
The transient mitotic histone H3 phosphorylation by various protein kinases regulates chromosome condensation and segregation, but the counteracting phosphatases have been poorly characterized [1-8]. We show here that PP1γ is the major histone H3 phosphatase acting on the mitotically phosphorylated (ph) residues H3T3ph, H3S10ph, H3T11ph, and H3S28ph. In addition, we identify Repo-Man, a chromosome-bound interactor of PP1γ [9], as a selective regulator of H3T3ph and H3T11ph dephosphorylation. Repo-Man promotes H3T11ph dephosphorylation by an indirect mechanism but directly and specifically targets H3T3ph for dephosphorylation by associated PP1γ. The PP1γ/Repo-Man complex opposes the protein kinase Haspin-mediated spreading of H3T3ph to the chromosome arms until metaphase and catalyzes the net dephosphorylation of H3T3ph at the end of mitosis. Consistent with these findings, Repo-Man modulates in a PP1-dependent manner the H3T3ph-regulated chromosomal targeting of Aurora kinase B and its substrate MCAK. Our study defines a novel mechanism by which PP1 counteracts Aurora B.  相似文献   

13.
The cullin-RING E3 ubiquitin ligases (CRLs) play crucial roles in modulating the stability of proteins in the cell and are, in turn, regulated by post-translational modification by the ubiquitin-like (Ubl) protein NEDD8. This process, termed neddylation, is reversible through the action of the COP9 signalosome (CSN); a multi-subunit metalloprotease conserved among eukaryotes that plays direct or indirect roles in DNA repair, cell signaling and cell cycle regulation in part through modulating the activity of the CRLs. Previously, inhibition of CRL neddylation by MLN4924, a small molecule inhibitor of the NEDD8-activating enzyme 1 (NAE1), was shown to induce interphase cell cycle arrest and cell death. Using fixed and living cell microscopy, we re-evaluated the cell cycle effects of inhibition of neddylation by MLN4924 in both asynchronous and mitotic cell populations. Consistent with previous studies, treatment of asynchronous cells with MLN4924 increased CDT1 expression levels, induced G2 arrest and increased nuclear size. However, in synchronized cells treated in mitosis, mitotic defects were observed including lagging chromosomes and binucleated daughter cells. Consistent with neddylation and deneddylation playing a role in cytokinesis, NEDD8, as well as subunits of the CSN, could be localized at the midbody and cleavage furrow. Finally, treatment of mitotic cells with MLN4924 induced the premature accumulation of MKLP1 at the cleavage furrow, a key regulator of cytokinesis, which was concomitant with increased abscission delay and failure. Thus, these studies uncover an uncharacterized mitotic effect of MLN4924 on MKLP1 accumulation at the midbody and support a role for neddylation during cytokinesis.

Abbreviations: CSN, COP9 Signalosome; MKLP1, mitotic kinesin-like protein 1; NEDD8, Neural precursor cell Expressed, Developmentally Down-regulated 8.  相似文献   


14.
Centralspindlin, a constitutive 2:2 heterotetramer of MKLP1 (a kinesin-6) and the non-motor subunit CYK4, plays important roles in cytokinesis. It is crucial for the formation of central spindle microtubule bundle structure. Its accumulation at the central antiparallel overlap zone is key for recruitment and regulation of downstream cytokinesis factors and for stable anchoring of the plasma membrane at the midbody. Both MKLP1 and CYK4 are required for efficient microtubule bundling. However, the mechanism by which CYK4 contributes to this is unclear. Here we performed structural and functional analyses of centralspindlin using high-speed atomic force microscopy, Fӧrster resonance energy transfer analysis, and in vitro reconstitution. Our data reveal that CYK4 binds to a globular mass in the atypically long MKLP1 neck domain between the catalytic core and the coiled coil and thereby reconfigures the two motor domains in the MKLP1 dimer to be suitable for antiparallel microtubule bundling. Our work provides insights into the microtubule bundling during cytokinesis and into the working mechanisms of the kinesins with non-canonical neck structures.  相似文献   

15.
Coronins are a conserved family of WD repeat-containing, actin-binding proteins that regulate cell motility in a variety of model organisms. Our results show that Coronin 1B is a ubiquitously expressed member of the mammalian Coronin gene family that co-localizes with the Arp2/3 complex at the leading edge of fibroblasts, and co-immunoprecipitates with this complex. Pharmacological experiments show that the interaction between Coronin 1B and the Arp2/3 complex is regulated by protein kinase C (PKC) phosphorylation. Coronin 1B is phosphorylated by PKC both in vitro and in vivo. Using tryptic peptide mapping and mutagenesis, we have identified serine 2 (Ser-2) on Coronin 1B as the major residue phosphorylated by PKC in vivo. Rat2 fibroblasts expressing the Coronin 1B S2A mutant show enhanced ruffling in response to phorbol 12-myristate 13-acetate (PMA) and increased speed in single cell tracking assays. Cells expressing the Coronin 1B S2D mutant have attenuated PMA-induced ruffling and slower cell speed. Expression of the S2A mutant partially protects cells from the inhibitory effects of PMA on cell speed, whereas expression of the S2D mutant renders cells hypersensitive to its effects. These data demonstrate that Coronin 1B regulates leading edge dynamics and cell motility in fibroblasts, and that its ability to control motility and interactions with the Arp2/3 complex are regulated by PKC phosphorylation at Ser-2. Furthermore, Coronin 1B phosphorylation is responsible for a significant fraction of the effects of PMA on fibroblast motility.  相似文献   

16.
Phosphorylation of profilin by ROCK1 regulates polyglutamine aggregation   总被引:1,自引:0,他引:1  
Y-27632, an inhibitor of the Rho-associated kinase ROCK, is a therapeutic lead for Huntington disease (HD). The downstream targets that mediate its inhibitory effects on huntingtin (Htt) aggregation and toxicity are unknown. We have identified profilin, a small actin-binding factor that also interacts with Htt, as being a direct target of the ROCK1 isoform. The overexpression of profilin reduces the aggregation of polyglutamine-expanded Htt and androgen receptor (AR) peptides. This requires profilin's G-actin binding activity and its direct interaction with Htt, which are both inhibited by the ROCK1-mediated phosphorylation of profilin at Ser-137. Y-27632 blocks the phosphorylation of profilin in HEK293 cells and primary neurons, which maintains profilin in an active state. The knockdown of profilin blocks the inhibitory effect of Y-27632 on both AR and Htt aggregation. A signaling pathway from ROCK1 to profilin thus controls polyglutamine protein aggregation and is targeted by a promising therapeutic lead for HD.  相似文献   

17.
The centralspindlin complex, which is composed of MKLP1 and MgcRacGAP, is one of the crucial factors involved in cytokinesis initiation. Centralspindlin is localized at the middle of the central spindle during anaphase and then concentrates at the midbody to control abscission. A number of proteins that associate with centralspindlin have been identified. These associating factors regulate furrowing and abscission in coordination with centralspindlin. A recent study identified a novel centralspindlin partner, called Nessun Dorma, which is essential for germ cell cytokinesis in Drosophila melanogaster. SHCBP1 is a human ortholog of Nessun Dorma that associates with human centralspindlin. In this report, we analyzed the interaction of SHCBP1 with centralspindlin in detail and determined the regions that are required for the interaction. In addition, we demonstrate that the central region is necessary for the SHCBP1 dimerization. Both MgcRacGAP and MKLP1 are degraded once cells exit mitosis. Similarly, endogenous and exogenous SHCBP1 were degraded with mitosis progression. Interestingly, SHCBP1 expression was significantly reduced in the absence of centralspindlin, whereas centralspindlin expression was not affected by SHCBP1 knockdown. Finally, we demonstrate that SHCBP1 depletion promotes midbody structure disruption and inhibits abscission, a final stage of cytokinesis. Our study gives novel insight into the role of SHCBP in cytokinesis completion.  相似文献   

18.
β‐Catenin is a multifunctional protein and participates in numerous processes required for embryonic development, cell proliferation, and homeostasis through various molecular interactions and signaling pathways. To date, however, there is no direct evidence that β‐catenin contributes to cytokinesis. Here, we identify a novel p‐S60 epitope on β‐catenin generated by Plk1 kinase activity, which can be found at the actomyosin contractile ring of early telophase cells and at the midbody of late telophase cells. Depletion of β‐catenin leads to cytokinesis‐defective phenotypes, which eventually result in apoptotic cell death. In addition, phosphorylation of β‐catenin Ser60 by Plk1 is essential for the recruitment of Ect2 to the midbody, activation of RhoA, and interaction between β‐catenin, Plk1, and Ect2. Time‐lapse image analysis confirmed the importance of β‐catenin phospho‐Ser60 in furrow ingression and the completion of cytokinesis. Taken together, we propose that phosphorylation of β‐catenin Ser60 by Plk1 in cooperation with Ect2 is essential for the completion of cytokinesis. These findings may provide fundamental knowledge for the research of cytokinesis failure‐derived human diseases.  相似文献   

19.
Cytokinesis separates cells by contraction of a ring composed of filamentous actin (F-actin) and type II myosin. Iqg1, an IQGAP family member, is an essential protein in Saccharomyces cerevisiae required for assembly and contraction of the actomyosin ring. Localization of F-actin to the ring occurs only after anaphase and is mediated by the calponin homology domain (CHD) of Iqg1, but the regulatory mechanisms that temporally restrict actin ring assembly are not well defined. We tested the hypothesis that dephosphorylation of four perfect cyclin-dependent kinase (Cdk) sites flanking the CHD promotes actin ring formation, using site-specific alanine mutants. Cells expressing the nonphosphorylatable iqg1-4A allele formed actin rings before anaphase and exhibited defects in myosin contraction and cytokinesis. The Cdc14 phosphatase is required for normal cytokinesis and acts on specific Cdk phosphorylation sites. Overexpression of Cdc14 resulted in premature actin ring assembly, whereas inhibition of Cdc14 function prevented actin ring formation. Cdc14 associated with Iqg1, dependent on several CHD-flanking Cdk sites, and efficiently dephosphorylated these sites in vitro. Of importance, the iqg1-4A mutant rescued the inability of cdc14-1 cells to form actin rings. Our data support a model in which dephosphorylation of Cdk sites around the Iqg1 CHD by Cdc14 is both necessary and sufficient to promote actin ring formation. Temporal control of actin ring assembly by Cdk and Cdc14 may help to ensure that cytokinesis onset occurs after nuclear division is complete.  相似文献   

20.
We have studied Sds22, a conserved regulator of protein phosphatase 1 (PP1) activity, and determined its role in modulating the activity of aurora B kinase and kinetochore-microtubule interactions. Sds22 is required for proper progression through mitosis and localization of PP1 to mitotic kinetochores. Depletion of Sds22 increases aurora B T-loop phosphorylation and the rate of recovery from monastrol arrest. Phospho-aurora B accumulates at kinetochores in Sds22-depleted cells juxtaposed to critical kinetochore substrates. Sds22 modulates sister kinetochore distance and the interaction between Hec1 and the microtubule lattice and, thus, the activation of the spindle assembly checkpoint. These results demonstrate that Sds22 specifically defines PP1 function and localization in mitosis. Sds22 regulates PP1 targeting to the kinetochore, accumulation of phospho-aurora B, and force generation at the kinetochore-microtubule interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号