首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scanning and transmission electron microscopic studies were carried out on the rapid cell surface response of PC12 pheochromocytoma cells to treatment with nerve growth factor (NGF), epidermal growth factor (EGF), and dibutyryl cyclic AMP. EGF induced a rapidly initiated series of surface changes identical to those previously observed with NGF. Ruffles appear over the dorsal surface of the cells by 30 s, are prominent at 3 min, and are absent by 7 min. Microvilli disappear as dorsal ruffles become prominent. Peripheral ruffles are seen by 3 min, are prominent on most of the cells by 7 min, and are virtually absent by 15 min. Large blebs are present on 50% of the cells by 2 h and are markedly decreased by 4 h. Within 30 s after NGF or EGF addition, an increase in the density of 60-130-nm coated pits per unit membrane is detectable. This reaches a maximum of two- to threefold in from 1 to 3 min and gradually decreases. Combined treatment with NGF and EGF increases surface ruffling and, after an early peak in coated pits which at 3 min is similar in magnitude to that observed for the separately administered factors, maintains a greater number of pits per unit area than either treatment alone. 3-d pretreatment with NGF greatly reduces the response of the cells to EGF both with respect to surface ruffling and coated pit formation while 4-h NGF pretreatment has no effect on the EGF response. Dibutyryl cyclic AMP induced none of the rapidly onsetting changes caused by NGF or EGF, and therefore it seems unlikely that cyclic AMP mediates these surface changes. Changes in cell surface architecture induced by NGF and EGF on PC12 cells and by NGF in normal sympathetic neurons (as previously described) indicates that such responses may be a widespread phenomenon associated with the interaction of at least some peptide growth factors/hormones with their receptors. These responses may represent or reflect primary events in the mechanism by which these factors act.  相似文献   

2.
Epidermal growth factor (EGF)-induced increases in cytosolic Ca2+ and inositol polyphosphate production were compared in a human hepatocellular carcinoma-derived cell line, PLC/PRF/5, and in an EGF receptor-overexpressing subline, NPLC/PRF/5. Formation of these second messengers was correlated to EGF receptor display at the cell surface by monitoring ligand-induced EGF receptor down-regulation. Both cell lines exhibited a strikingly similar cytosolic Ca2+ increase upon exposure to EGF. The initial inositol phosphate responses were also similar in the two cell lines; inositol 1,4,5-trisphosphate increased within 10-15 s and returned to prestimulatory values after 2 min in both cell lines, while inositol tetrakisphosphate and inositol 1,3,4-trisphosphate were elevated after a 2-min exposure to EGF. At later times the responses were markedly different; NPLC/PRF/5 cells exhibited prolonged production of inositol 1,3,4-trisphosphate and inositol tetrakisphosphate (maximum at 1-3 h) but PLC/PRF/5 cells showed decreased levels of these isomers after 10 min and a return to basal values by 1 h. Exposure of PLC/PRF/5 cells to EGF caused a progressive decrease in the amount of EGF receptor at the cell surface whereas such treatment did not change the surface receptor levels in NPLC/PRF/5 cells. Kinetic analysis of EGF receptor down-regulation showed that receptor internalization was rapid enough to account for the transient nature of the inositol phosphate response in PLC/PRF/5 cells. Thus, the divergent patterns of signaling exhibited by the two cell lines may reflect differences in the efficiency of EGF-induced down-regulation of surface receptors.  相似文献   

3.
Human epidermoid carcinoma KB cells exhibit rapid induction of membrane ruffling in response to epidermal growth factor (EGF), insulin, and insulin-like growth factor-I (IGF-I) (Kadowaki, T., Koyasu, S., Nishida, E., Sakai, H., Takaku, F., Yahara, I., and Kasuga, M. (1986) J. Biol. Chem. 261, 16141-16147). We have analyzed the role of protein kinase C (PKC) in this response. Treatment of KB cells with 4 beta-phorbol 12,13-dibutyrate (PDBu) (100 ng/ml) for 30 min caused translocation of PKC to the membrane. This treatment completely inhibited the induction of membrane ruffling by EGF, insulin, and IGF-I. Prolonged treatment with PDBu (200 ng/ml for 15 h) induced complete depletion of the PKC activity in the cells. Under these conditions, EGF binding to cells and autophosphorylation of the EGF receptor occurred normally, while EGF could not induce membrane ruffling. In contrast, insulin- or IGF-I-induced membrane ruffling occurred normally in the PKC-depleted cells. Moreover, H-7 (PKC inhibitor) inhibited only EGF-induced membrane ruffling in a dose-dependent manner. We further found that EGF, but not insulin/IGF-I, caused transient translocation of PKC to the membrane. All these results suggest that PKC is required for the membrane ruffling induced by EGF but not for that induced by insulin/IGF-I. Therefore, there are PKC-dependent and independent pathways in the growth factor-induced membrane ruffling. Furthermore, we propose dual roles of PKC in the EGF signaling, a signal transmitting role and a negative feedback role.  相似文献   

4.
Scanning electron microscopy was used to study regulation of growth cone shape and surface morphology by nerve growth factor (NGF). The growth cones of cultured rat sympathetic neurons and neuronally-differentiated PC12 cells were observed under conditions of continuous NGF exposure, NGF withdrawal, and NGF readdition. Growth cones of cells cultured in the continuous presence of NGF were mostly spread in shape and about 60% possessed surface ruffles. Ruffles appeared to be largely restricted to growth cones in that few were observed on cell bodies and neurites. Withdrawal of NGF for 4–5 hr caused most of the growth cones to take on a non-spread or contracted appearance and to lose their ruffles. Readdition of NGF promoted rapid changes in growth cone properties. Within 30 sec, ruffling was again evident on the growth cones and remained prominent there throughout the course of treatment (up to 5 hr). This was in contrast to cell bodies on which, as previously reported, ruffling also occurred following NGF readdition, but only transiently (for less than 15 min). Respreading of growth cones also occurred under these conditions. This was evident within 1 min of NGF readdition and reached the levels observed in continuously-treated cultures within 1–2 hr. Neurites were also examined. Ruffles were only rarely present in the continuous presence of NGF and were absent after NGF withdrawal. NGF readdition elicited ruffling along neurites within 30 sec; the prevalence of such ruffles diminished to that seen in continuously-treated cultures within about an hour. As evidence of the specificity of these NGF effects, epidermal growth factor and dibutyryl cAMP, agents that elicit responses in PC12 cells, but do not promote their neuronal differentiation, had no observable effect on NGF-deprived growth cones. These findings demonstrate that NGF exerts very rapid effects on growth cone shape and surface morphology. Such actions may play roles in regulation of growth cone movement and guidance by NGF.Special Issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.  相似文献   

5.
By the use of rhodamine-phalloidin, the distribution of actin in A-431 cells during the action of epidermal growth factor (EGF) has been studied. Changes in the pattern of staining are observed in 30-60 s after addition of the EGF. Microvilli and wrinkles are created on the cell surface. Following a 5-10 min action of EGF, rhodamine-phalloidin stained intensely ruffles and cell borders. After 60 min, the ruffling of cell surface disappeared, and actin was seen concentrating on the cell borders only. Electron microscopy of the EGF-treated A-431 cells lysed by Triton X-100 also revealed some vigorous fibrillar bunches on the cell edges.  相似文献   

6.
Intense, continuous ruffling is a characteristic of many transformed cells, but untransformed cells ruffle intensely only briefly after exposure to growth factors. We reported previously that cells of a normal rat kidney (NRK) cell line transformed by Kirsten murine sarcoma virus secrete their own ruffle-inducing agent(s) that cause sustained ruffling in either themselves or untransformed NRK cells. In the present study, we examined the roles of the transforming growth factors TGF-alpha and TGF-beta in the induction and maintenance of ruffling in untransformed NRK cells and observed the following: TGF-alpha caused a transient epidermal growth factor (EGF)-like response, which could be blocked by prior exposure of cells to EGF or by antiserum directed against the COOH-terminus of TGF-alpha. TGF-beta caused no ruffling and did not itself prolong TGF-alpha ruffling. A new, buffer-soluble (transferable) mediator activity produced by incubation of TGF-beta with NRK cells for 6-h extended the duration of maximal TGF-alpha-induced ruffling by several-fold. This study demonstrates that TGF-alpha alone causes an EGF-like, transient ruffling response, but neither TGF-alpha or TGF-beta alone, nor the two together, cause transformation-associated sustained ruffling. Rather, TGF-alpha acts in concert with a new, TGF-beta-dependent activity. This new activity appears to inhibit normal cellular off-regulation of TGF-alpha-induced ruffling. Inhibition of the cellular off-regulation of a growth factor response could play a key role in the unregulated growth associated with malignancy.  相似文献   

7.
This report describes the effects of epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGF-beta 1) on the anchorage-dependent and -independent growth of rat heart endothelial cells (RHE-1A). When RHE-1A cells were grown in monolayer culture with medium containing 10% fetal bovine serum (FBS) supplemented with epidermal growth factor (0.1-100 ng/ml), growth was stimulated fivefold when compared to that of cells grown in medium containing 10% FBS alone. The stimulatory effect of EGF on RHE-1A cell monolayer growth was dose-dependent and half-maximal at 5 ng/ml. The addition of TGF-beta 1 in the range 0.1-10 ng/ml had no effect on RHE-1A cell monolayer growth when added to medium containing 10% FBS alone or 10% FBS supplemented with EGF (50 ng/ml). RHE-1A cells failed to grow under anchorage-independent conditions in 0.3% agar medium containing 10% FBS. In the presence of EGF, however, colony formation increased dramatically. The stimulatory effect of EGF was dose-dependent in the range 0.1-100 ng/ml and was half-maximal at 5 ng/ml. In contrast to its effects under anchorage-dependent conditions, TGF-beta 1 (0.1-10 ng/ml) antagonized the stimulatory effects of EGF on RHE-1A cell anchorage-independent growth. The inhibitory effect of TGF-beta 1 was dose-dependent and half-maximal at 0.1 ng/ml. EGF-induced RHE-1A soft agar colonies were isolated and reinitiated in monolayer culture. They retained the cobblestone morphology and contact-inhibition characteristic of normal vascular endothelial cells. Each of the clones continued to express Factor VIII antigen. These findings suggest that TGF-beta may influence not only endothelial cell proliferation but also anchorage dependence. These effects may in turn be of relevance to endothelial cell growth and angiogenesis in vivo.  相似文献   

8.
Confluent and proliferatively quiescent T51B rat liver epithelial cells provide a cellular model for the study of epidermal growth factor (EGF) effects in non-neoplastic cells. Immunoreactive calpactin II, a well-known substrate for EGF-receptor kinase, was found predominantly in the cytosol, although a second immunoreactive pool was found in a Triton X-100-extractable membrane fraction. Stimulation with EGF resulted in a rapid and transient (2-5 min) formation of ruffles at the cell surface and at the cell-cell contacts. Both calpactin II and filamentous actin were found co-localized at the membrane ruffles. Immunoprecipitations of membrane-bound calpactin II from 32P-labeled cells indicate a transient EGF-dependent phosphorylation of calpactin II correlating with membrane ruffling. These results suggest a temporal (2-5 min) function for calpactin II at the plasma membrane during the EGF-induced mitogenesis of T51B cells.  相似文献   

9.
The effect of epidermal growth factor (EGF) receptor overexpression on ligand-induced EGF receptor downregulation was examined using a hepatoma-derived cell line, PLC/PRF/5, which expresses normal amounts of the EGF receptor, and a subline, NPLC/PRF/5, which expresses 10-fold more receptors at its cell surface. PLC/PRF/5 cells efficiently downregulated surface receptor levels upon exposure to saturating and subsaturating concentrations of EGF; the rate of receptor downregulation corresponded to that of ligand-receptor internalization. Upon internalization, EGF receptors were degraded and receptor biosynthesis remained at basal levels. EGF surface receptor remained downregulated for as long as cells were exposed to EGF. By contrast, surface EGF receptor abundance in NPLC/PRF/5 cells decreased by only 5-15% after 1-4 h incubation with subsaturating doses of EGF and actually increased by 67% within 20 h. Exposure of these cells to saturating concentrations of EGF induced modest decreases in surface receptor abundance during the initial 12 h incubation, followed by a progressive decline to 30% of initial values by 24 h. Relative ligand-receptor internalization rates in NPLC/PRF/5 cells were lower than those in PLC/PRF/5, although their surface receptor population was even higher than that predicted by the decreased internalization rates. EGF receptor degradation in NPLC/PRF/5 cells was also inhibited; exposure to saturating levels of EGF for more than 16 h was necessary before significant degradation occurred. Receptor protein and mRNA biosynthesis in NPLC/PRF/5 were stimulated by 8 h exposure to EGF but when saturating concentrations of EGF were present for 16 h, receptor biosynthesis was inhibited. EGF receptor overexpression circumvents the downregulatory effect of EGF by decreasing the rate of receptor internalization, inhibiting degradation of the internalized receptor pool, and stimulating EGF receptor biosynthesis. Conversely, receptor downregulation becomes pronounced at late times when receptor degradation is high and biosynthesis is inhibited.  相似文献   

10.
Insulin-like growth factor (IGF) I (greater than or equal to 10(-10)M, insulin-like growth factor II (greater than or equal to 10(-9) M), insulin (greater than or equal to 10(-9) M, and epidermal growth factor (EGF, greater than or equal to 10(-11) M) caused rapid membrane ruffling in KB cells. The morphological change was observed within 1 min after the addition of these growth factors and was accompanied by microfilament reorganization, but not by microtubule reorganization. IGF-I, IGF-II, and insulin induced morphologically very similar or identical membrane ruffles with the order of potency IGF-I greater than IGF-II greater than insulin, whereas EGF-induced membrane ruffles were morphologically different. KB cells possessed EGF receptors, type I IGF receptors, and insulin receptors, but few or no type II IGF receptors. Monoclonal antibody against type I IGF receptors, which completely inhibited the binding of 125I-IGF-I to the cells but did not inhibit the binding of 125I-insulin, caused marked inhibition of IGF-I (10(-8) M)-stimulated membrane ruffling. IGF-II (10(-8) M)-stimulated membrane ruffling was partially inhibited in the presence of this antibody, but insulin (10(-7) M)-stimulated membrane ruffling was only slightly inhibited. In contrast, monoclonal antibody against insulin receptors blocked insulin (10(-7) M) stimulation, but not IGF-I (10(-8) M) stimulation, of membrane ruffling. Thus, this study provides evidence that IGF-I and insulin act mostly through their own (homologous) receptors and that IGF-II acts by cross-reacting with both type I IGF and insulin (heterologous) receptors in causing rapid alterations in cytoskeletal structure.  相似文献   

11.
Insulin induced the formation of ruffling membranes in cultured KB cells (a cell strain derived from human epidermoid carcinoma) within 1-2 min after its addition. The ruffled regions were stained strongly with antibody to actin but not that to tubulin. Pretreatment of KB cells with agents disrupting microfilaments (cytochalasins), but not with those disrupting microtubules (colcemid, nocodazole, and colchicine) completely inhibited the formation of ruffling membranes. Pretreatment of KB cells with dibutyryl cyclic AMP, but not with dibutyryl cyclic GMP, also inhibited the formation of ruffling membranes. Addition of insulin enhanced Na+-dependent uptake of a system A amino acid (alpha-amino isobutyric acid; AIB) by the cells within 5 min after the addition, and decreased the cyclic AMP content of the cells. Treatments that inhibited insulin-induced formation of ruffling membranes of KB cells also inhibited insulin-induced enhancement of their AIB uptake. From these observations, the mechanism of insulin-induced formation of ruffling membranes and its close correlation with AIB transport are discussed.  相似文献   

12.
The transferrin (Tf) receptor is a major transmembrane protein which provides iron for normal and malignant cell growth. Epidermal growth factor (EGF) has been reported to rapidly and transiently alter the number of surface Tf receptors in normal and transformed epithelial cells. To investigate mechanisms of EGF-induced changes in surface Tf display, EGF effects on surface Tf receptors were compared in two cell lines which differ in their number of EGF receptors and growth responses to EGF. In cloned A431 cells with high receptor numbers which are growth-inhibited by EGF, EGF caused a 50% decrease in Tf receptor expression after 30 min. In contrast, EGF induced a rapid, transitory increase (within 5 min) in the number of surface Tf receptors on KB carcinoma cells which returned to basal levels by 15 min. The observed changes in Tf receptor display were due to altered receptor distribution and not changes in ligand affinity or total cellular transferrin receptor pools. Anti-EGF receptor monoclonal antibody blocked effects of EGF on transferrin receptor expression. Since the antibody is internalized and causes EGF receptor down-regulation, effects on transferrin receptor expression were independent of these events. EGF-induced alterations in Tf receptor display occurred even when cells were pretreated with colchicine, suggesting that changes in surface Tf binding were not mediated by cytoskeletal components. Na orthovanadate, which mimics some early cellular effects of EGF, duplicated EGF's effects on A431 Tf receptors, but had no effect on KB cells, suggesting these responses occur by differing mechanisms. To determine whether EGF caused changes in Tf receptor phosphorylation, 32P-labelled Tf receptors were immunoprecipitated after EGF treatment. After exposure to EGF, A431 cells showed no change in Tf phosphorylation, but KB cells showed a transient, 6-fold increase in transferrin receptor phosphorylation on serine residues. In both A431 and KB cells, phorbol ester (PMA) also increased phosphorylation on transferrin receptors, but had little effect on surface Tf receptor expression. In malignant cell lines, EGE induces rapid, variable changes in transferrin receptor expression and phosphorylation which differ from the effects of PMA. These early responses to EGF appear to differ with the cell type and correlate poorly with alterations in Tf receptor phosphorylation. These results suggest Tf receptor phosphorylation does not regulate Tf receptor display in all cells.  相似文献   

13.
Rat pheochromocytoma cells (clone PC12) possess functional surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells respond to NGF as well as to dibutyryl cyclic AMP (dbcAMP) by arrest of cell proliferation and initiation of morphological differentiation, while EGF acts as a mitogen. Exposure of PC12 cells to NGF for several days resulted in a complete loss of rapid EGF responses, such as membrane ruffling and activation of active K+ transport. EGF binding studies revealed that this loss of EGF responses was due to an almost complete reduction of the number of EGF binding sites. In contrast, exposure of PC12 cells to dbcAMP for 2 days did not affect the rapid EGF responses, despite the morphological differentiation. Moreover, EGF binding studies demonstrated a twofold increase in the number of high-affinity binding sites and a small increase in the number of low-affinity sites. In addition, exposure of the cells to dbcAMP caused a twofold increase of EGF-receptor phosphotyrosine kinase activity. These results indicate that neither EGF-binding or the presence of EGF receptors nor the rapid EGF responses are sufficient for persistent proliferation, on one hand, or sufficient to avoid morphological differentiation, on the other.  相似文献   

14.
Epidermal growth factor (EGF) has been shown to inhibit the multiplication of the human epidermoid carcinoma cell line A-431. In the present report it is shown that, despite growth inhibition, EGF caused a marked synthesis of DNA and nonhistone proteins, without progression into mitosis. This event was associated with a retraction of the monolayer into colonies of cells. This suggests that the cell cycle of A-431 cells is controlled by two surface membrane signals: one generated by EGF stimulating the synthetic events of the G1 and S phases; a second signal, leading to progression into mitosis appears either not to be generated or to be inhibited by EGF.  相似文献   

15.
Addition of EGF to human carcinoma A-431 cells is known to induce membrane ruffling after approximately 2 min (Chinkers, M., J. A. McKanna, and S. Cohen. 1979. J. Cell Biol. 83:260-265) and the phosphorylation of a protein referred to as p81, a known substrate for various protein-tyrosine kinases (Cooper, J. A., D. F. Bowen-Pope, E. Raines, R. Ross, and T. Hunter. 1982. Cell. 31:263-273). Ezrin, a Mr approximately 80,000 cytoskeletal protein of the isolated chicken microvillar core, is present in actin-containing cell surface structures of a wide variety of cells (Bretscher, A. 1983. J. Cell Biol. 97:425-432). Ezrin was then found to be homologous to p81 and to be phosphorylated on tyrosine in response to EGF (Gould, K. L., J. A. Cooper, A. Bretscher, and T. Hunter. 1986. J. Cell Biol. 102:660-669). Here, the purification of ezrin from human placenta is described. Antibodies to human ezrin, together with antibodies to other microfilament-associated proteins, were used to follow the distribution and phosphorylation of these proteins in A-431 cells after EGF treatment. EGF induces the formation of microvillar-like surface structures on these cells within 30 s and these give way to membrane ruffles at approximately 2-5 min after EGF addition; the cells then round up after approximately 10-20 min. Ezrin is recruited into the microvillar-like structures and the membrane ruffles, and is phosphorylated on tyrosine and serine in a time course that parallels the formation and disappearance of these surface structures. Spectrin is recruited into the membrane ruffles and shows a similar rapid kinetics of phosphorylation, but only on serine residues, and remains phosphorylated through the rounding up of the cells. The microvillar- like structures and membrane ruffles are also enriched in fimbrin and alpha-actinin. Myosin becomes rapidly reorganized into a striated pattern that is consistent with it playing a role in cell rounding. These results show that two cortical proteins, ezrin and spectrin, become phosphorylated in a time course coincident with remodeling of the cell surface. The results are consistent with the notion that ezrin phosphorylation may play a role in the formation of cell surface projections whereas spectrin phosphorylation may be involved in remodelling of more planar areas of the cell surface.  相似文献   

16.

Background

Reprogramming adult human somatic cells to create human induced pluripotent stem (hiPS) cell colonies involves a dramatic morphological and organizational transition. These colonies are morphologically indistinguishable from those of pluripotent human embryonic stem (hES) cells. G protein-coupled receptors (GPCRs) are required in diverse developmental processes, but their role in pluripotent colony morphology and organization is unknown. We tested the hypothesis that Gi-coupled GPCR signaling contributes to the characteristic morphology and organization of human pluripotent colonies.

Methodology/Principal Findings

Specific and irreversible inhibition of Gi-coupled GPCR signaling by pertussis toxin markedly altered pluripotent colony morphology. Wild-type hES and hiPS cells formed monolayer colonies, but colonies treated with pertussis toxin retracted inward, adopting a dense, multi-layered conformation. The treated colonies were unable to reform after a scratch wound insult, whereas control colonies healed completely within 48 h. In contrast, activation of an alternative GPCR pathway, Gs-coupled signaling, with cholera toxin did not affect colony morphology or the healing response. Pertussis toxin did not alter the proliferation, apoptosis or pluripotency of pluripotent stem cells.

Conclusions/Significance

Experiments with pertussis toxin suggest that Gi signaling plays a critical role in the morphology and organization of pluripotent colonies. These results may be explained by a Gi-mediated density-sensing mechanism that propels the cells radially outward. GPCRs are a promising target for modulating the formation and organization of hiPS and hES cell colonies and may be important for understanding somatic cell reprogramming and for engineering pluripotent stem cells for therapeutic applications.  相似文献   

17.
Exposure of BALB/c-3T3 cells (clone A31) to platelet-derived growth factor (PDGF) results in a rapid time- and dose-dependent alteration in the distribution of vinculin and actin. PDGF treatment (6-50 ng/ml) causes vinculin to disappear from adhesion plaques (within 2.5 min after PDGF exposure) and is followed by an accumulation of vinculin in punctate spots in the perinuclear region of the cell. This alteration in vinculin distribution is followed by a disruption of actin-containing stress fibers (within 5 to 10 min after PDGF exposure). Vinculin reappears in adhesion plaques by 60 min after PDGF addition while stress fiber staining is nondetectable at this time. PDGF treatment had no effect on talin, vimentin, or microtubule distribution in BALB/c-3T3 cells; in addition, exposure of cells to 5% platelet-poor plasma (PPP), 0.1% PPP, 30 ng/ml epidermal growth factor (EGF), 30 ng/ml somatomedin C, or 10 microM insulin also had no effect on vinculin or actin distribution. Other competence-inducing factors (fibroblast growth factor, calcium phosphate, and choleragen) and tumor growth factor produced similar alterations in vinculin and actin distribution as did PDGF, though not to the same extent. PDGF treatment of cells for 60 min followed by exposure to EGF (0.1-30 ng/ml for as long as 8 h after PDGF removal), or 5% PPP resulted in the nontransient disappearance of vinculin staining within 10 min after EGF or PPP additions; PDGF followed by 0.1% PPP or 10 microM insulin had no effect. Treatment of cells with low doses of PDGF (3.25 ng/ml), which did not affect vinculin or actin organization in cells, followed by EGF (10 ng/ml), resulted in the disappearance of vinculin staining in adhesion plaques, thus demonstrating the synergistic nature of PDGF and EGF. These data suggest that PDGF-induced competence and stimulation of cell growth in quiescent fibroblasts are associated with specific rapid alterations in the cellular organization of vinculin and actin.  相似文献   

18.
CG-1 human nasopharyngeal carcinoma cells in monolayer culture formed both cohesive, epithelial-like colonies and scattered, fibroblastic-like colonies in mixed proportions. In the presence of exogenously added bFGF (4 ng/ml), about 85% of the colonies formed were fibroblastic-like. CG-1 cells were capable of synthesizing and releasing bFGF, and, when compared by the immunological method, cells in fibroblastic-like colonies were found to contain higher levels of endogenous bFGF than cells in the epithelial-like colonies. Furthermore, cells in the peripheral region of the epithelial-like colonies, which were fibroblastic-like in morphology, also appeared to contain higher levels of endogenous bFGF. In addition, in the presence of suramin, neutralizing antibody to bFGF, or neutralizing antibodies to bFGF and EGF, the number of cohesive colonies formed was greatly increased. Moreover, addition of the 2 M NaCl-eluted heparin-Sepharose fraction of the CG-1 cell-coditioned medium promoted the formation of dispersed colony in a dose-dependent manner. The results suggest that bFGF can regulate CG-1 cell phenotype in an autocrine manner. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Normal rat kidney [NRK] cells grown in the presence of epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) have a normal phenotype and undergo density-dependent growth inhibition, whereas in the presence of multiple growth factors, density arrest is lost and the cells become phenotypically transformed. We studied the influence of the protein tyrosine phosphatease (PTPase) inhibitor sodium orthovanadate on the mitogenic stimulation of NRK cells by growth factors and on transformation-linked properties as loss of density-dependent growth inhibition and anchorage-independent growth. The fraction of cells in serum-deprived monolayer cultures that is induced to proliferate upon mitogenic stimulation by EGF or PDGF is only slightly enhanced upon addition of low concentrations (25–50 μM) of vanadate. Addition of vanadate per se induces proliferation of only a very limited amount of cells, but results in a shift of the dose-response curves for other growth factors to lower concentrations. Vanadate added in combination with EGF or PDGF is able to mimic the effect of transforming growth factor β (TGFβ) in inducing phenotypic transformation. In monolayer cultures density-dependent growth inhibition is lost and anchorage-independent proliferation is observed on dishes coated with poly(2-hydroxy-ethyl methacrylate) (polyHEMA). The extent of these changes is similar to that induced by TGFβ. However, the morphology of the obtained colonies in polyHEMA-coated dishes is quite different. Cells transformed by TGFβ in the presence of EGF form rather amorphous colonies, whereas in the presence of orthovanadate colonies are formed that tend to fall apart in loose cells. The effect of vanadate on cell transformation is dependent on the growth factor conditions in a bimodal way. When a suboptimal dose of growth factor(s) is used, 25 μM vanadate is very effective in preventing density-induced growth inhibition and stimulating anchorage-independent proliferation. However, the same concentration of vandate is inhibitory when cells are maximally stimulated and antagonizes the transforming effect of TGFβ added in combination with other growth factors. It is hypothesized that vanadate acts on a set of different protein tyrosine phosphatases. Some of these are positive and others negative regulators of growth. © 1993 Wiley-Liss, Inc.  相似文献   

20.
We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号