首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two nasopharyngeal carcinoma (NPC) cell lines and one keratinocyte cell line could be infected with Epstein-Barr virus (EBV) by cocultivation with virus-producing cells but not by cell-free virus. Using porous culture inserts to manipulate the cell-to-cell contact, we demonstrated that contact between EBV donor B cells and EBV recipient epithelial cells was required for the infection. Cell-to-cell contact not only provided a CR2-independent route of infection but also enhanced CR2-mediated infection in a synergistic manner. Activity of two EBV promoters (Cp and Wp) and expression of EBNA2 were detected in the infected population. A small proportion of the infected cells spontaneously entered an EBV lytic state, which could be induced prominently by chemical treatment. This study provides information on how EBV may infect epithelial cells in vivo, such as at the onset of NPC development.  相似文献   

2.
Nonkeratinizing nasopharyngeal carcinomas (NPC) are >95% associated with the expression of the Epstein-Barr virus (EBV) LMP2A latent protein. However, the role of EBV, in particular, LMP2A, in tumor progression is not well understood. Using Affymetrix chips and a pattern-matching computational technique (neighborhood analysis), we show that the level of LMP2A expression in NPC biopsy samples correlates with that of a cellular protein, integrin-alpha-6 (ITGalpha6), that is associated with cellular migration in vitro and metastasis in vivo. We have recently developed a primary epithelial model from tonsil tissue to study EBV infection in epithelial cells. Here we report that LMP2A expression in primary tonsil epithelial cells causes them to become migratory and invasive, that ITGalpha6 RNA levels are up-regulated in epithelial cells expressing LMP2, and that ITGalpha6 protein levels are increased in the migrating cells. Blocking antibodies against ITGalpha6 abrogated LMP2-induced invasion through Matrigel by primary epithelial cells. Our results provide a link between LMP2A expression, ITGalpha6 expression, epithelial cell migration, and NPC metastasis and suggest that EBV infection may contribute to the high incidence of metastasis in NPC progression.  相似文献   

3.
4.
Human immunodeficiency virus type 1 (HIV-1) can infect CD4+ lymphocytes, monocytes-macrophages, and various other cell lines, including B-cell lines. To study the parameters of B-cell infections, we examined the susceptibility of 24 B-lymphoid cell lines to both HIV-1 and HIV-2 infections. These cell lines included a series of Epstein-Barr virus (EBV) genome-negative Burkitt's lymphoma cell lines and their EBV-converted counterparts. To infect these cells we used two HIV-1 isolates and one HIV-2 isolate. Infections were monitored with a cytoplasmic RNA dot-blot and a syncytium assay. HIV infection was also studied by a novel method based on electrophoresis of DNA liberated from cells that were lysed in situ in the well of an agarose gel. All human B-cell lines could be infected with HIV-1, regardless of the presence of EBV genomes; thus, EBV infection had no major effect on HIV susceptibility of B-cell lines. Integrated proviral HIV genomes could be detected by Southern blot analysis of DNA extracted from long-term, non-HIV-producing B-cell lines. This study suggests that B-lymphoid cells may serve as reservoirs for latent or persistent HIV infections in vivo, even in the absence of EBV infection.  相似文献   

5.
The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection.  相似文献   

6.
The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva.  相似文献   

7.
8.
Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associated with epithelial cell and B-cell malignancies. EBV infection of B lymphocytes is essential for acute and persistent EBV infection in humans; however, the role of epithelial cell infection in the normal EBV life cycle remains controversial. The rhesus lymphocryptovirus (LCV) is an EBV-related herpesvirus that naturally infects rhesus macaques and can be used experimentally to model persistent B-cell infection and B-cell lymphomagenesis. We now show that the rhesus LCV can infect epithelial cells in immunosuppressed rhesus macaques and can induce epithelial cell lesions resembling oral hairy leukoplakia in AIDS patients. Electron microscopy, immunohistochemistry, and DNA-RNA in situ hybridization were used to identify the presence of a lytic rhesus LCV infection in these proliferative, hyperkeratotic, or parakeratotic epithelial cell lesions. These studies demonstrate that the rhesus LCV has tropism for epithelial cells, in addition to B cells, and is a relevant animal model system for studying the role of epithelial cell infection in EBV pathogenesis.  相似文献   

9.
Epstein-Barr virus (EBV)-induced lymphoproliferative disease is an important complication in the context of immune deficiency. Impaired T-cell immunity allows the outgrowth of transformed cells with the subsequent production of predominantly B-cell lymphomas. Currently there is no in vivo model that can adequately recapitulate EBV infection and its association with B-cell lymphomas. NOD/SCID mice engrafted with human CD34(+) cells and reconstituted mainly with human B lymphocytes may serve as a useful xenograft model to study EBV infection and pathogenesis. We therefore infected reconstituted mice with EBV. High levels of viral DNA were detected in the peripheral blood of all infected mice. All infected mice lost weight and showed decreased activity levels. Infected mice presented large visible tumors in multiple organs, most prominently in the spleen. These tumors stained positive for human CD79a, CD20, CD30, and EBV-encoded RNAs and were light chain restricted. Their characterization is consistent with that of large cell immunoblastic lymphoma. In addition, tumor cells expressed EBNA1, LMP1, and LMP2a mRNAs, which is consistent with a type II latency program. EBV(+) lymphoblastoid cell lines expressing human CD45, CD19, CD21, CD23, CD5, and CD30 were readily established from the bone marrow and spleens of infected animals. Finally, we also demonstrate that infection with an enhanced green fluorescent protein (EGFP)-tagged virus can be monitored by the detection of infected EGFP(+) cells and EGFP(+) tumors. These data demonstrate that NOD/SCID mice that are reconstituted with human CD34(+) cells are susceptible to infection by EBV and accurately recapitulate important aspects of EBV pathogenesis.  相似文献   

10.
Epstein-Barr virus (EBV) is a persistent, orally transmitted herpesvirus that replicates in B cells and epithelial cells and is associated with lymphoid and epithelial malignancies. The virus binds to CD21 on B cells via glycoprotein gp350/220 and infects efficiently. Infection of cultured epithelial cells has not typically been efficient but can occur in the absence of gp350/220 and CD21 and in vivo is thought to be important to the development of nasopharyngeal carcinoma. We report here that antibodies to gp350/220, which inhibit EBV infection of B cells, enhance infection of epithelial cells. The effect is not mediated by Fc receptor binding but is further enhanced by antibody cross-linking, which may patch gp350/220 in the virus envelope. Saliva from EBV-seropositive individuals has similar effects that can be reversed by depletion of antibody. The results are consistent with a model in which gp350/220 interferes with the access of other important players to the epithelial cell surface. The results may have implications for the development of nasopharyngeal carcinoma in high-risk populations in which elevated titers of antibody to EBV lytic cycle proteins are prognostic.  相似文献   

11.
Epstein-Barr virus (EBV) uses tonsils as the portal of entry to establish persistent infection. EBV is found in various B-cell subsets in tonsils but exclusively in memory B cells in peripheral blood. The in vitro susceptibilities of B-cell subsets to EBV infection have been studied solely qualitatively. In this work, we examined quantitatively the in vitro susceptibilities of various B-cell subsets from different tissue origins to EBV infection. First, we established a centrifugation-based inoculation protocol (spinoculation) that resulted in a significantly increased proportion of infected cells compared to that obtained by conventional inoculation, enabling a detailed susceptibility analysis. Importantly, B-cell infection occurred via the known EBV receptors and infected cells showed EBV mRNA expression patterns similar to those observed after conventional inoculation, validating our approach. Tonsillar na?ve and memory B cells were infected ex vivo at similar frequencies. In contrast, memory B cells from blood, which represent B cells from various lymphoid tissues, were infected at lower frequencies than their na?ve counterparts. Immunoglobulin A (IgA)-positive or IgG-positive tonsillar memory B cells were significantly more susceptible to EBV infection than IgM-positive counterparts. Memory B cells were transformed with lower efficiency than na?ve B cells. This result was paralleled by lower proliferation rates. In summary, these data suggest that EBV exploits the B-cell differentiation status and tissue origin to establish persistent infection.  相似文献   

12.
The Epstein-Barr virus (EBV) genome-negative Burkitt's lymphoma-derived cell lines BJAB and Ramos and their in vitro EBV-converted sublines BJAB-B1, BJAB-A5, BJAB-B95-8, and AW-Ramos were infected with high multiplicities of herpes simplex virus type 1 (HSV-1; 10 to 70 PFU/cell). Cultures were monitored for cell growth and HSV-1 DNA synthesis. EBV-converted BJAB cultures were more permissive for HSV-1 infection than BJAB cultures. Significant cell killing and HSV-1 DNA synthesis were observed during the first 48 h of infection in the EBV-converted BJAB cultures but not in the BJAB cultures. The EBV-converted BJAB-B1 cell line contains an appreciable fraction of EBV-negative cells. Therefore, it was cloned. EBV-positive and -negative cells were identified by using EBV-determined nuclear antigen anti-complement immunofluorescence. Two types of subclones were identified: (i) those which contained both EBV-determined nuclear antigen-positive and -negative cells and (ii) those which contained only EBV-determined nuclear antigen-negative cells. When levels of HSV-1 DNA synthesis were measured in these subclones, it was found that the former were more permissive for HSV-1 infection than the latter. Thus, the presence of the EBV genome in BJAB cells correlates with increased permissiveness of these cells for HSV-1 during the first 48 h of infection. Nonetheless, persistent HSV-1 infections were established in both BJAB and EBV-converted BJAB-B1 cultures. No differences in extent of permissiveness for HSV-1 infection were found for Ramos and EBV-converted AW-Ramos cells.  相似文献   

13.
The binding of the viral major glycoprotein BLLF1 (gp350/220) to the CD21 cellular receptor is thought to play an essential role during infection of B lymphocytes by the Epstein-Barr virus (EBV). However, since CD21-negative cells have been reported to be infectible with EBV, additional interactions between viral and cellular molecules seem to be probable. Based on a recombinant genomic EBV plasmid, we deleted the gene that encodes the viral glycoprotein BLLF1. We tested the ability of the viral mutant to infect different lymphoid and epithelial cell lines. Primary human B cells, lymphoid cell lines, and nearly all of the epithelial cell lines that are susceptible to wild-type EBV infection could also be successfully infected with the viral mutant in vitro, although the efficiency of infection with BLLF1-negative virus was clearly lower than the one observed with wild-type EBV. Our studies show that the interaction between BLLF1 and CD21 is not absolutely required for the infection of lymphocytes and epithelial cells, indicating that viral molecules other than BLLF1 can mediate the binding of EBV to its target cells. In this context, our results further suggest the hypothesis that additional cellular molecules, apart from CD21, allow virus entry into these cells.  相似文献   

14.
15.
The lack of an adequate in vitro model has hampered study of the cellular basis by which influenza A virus causes disease in the human airway. We report in vitro infection of human airway epithelial cells by influenza A virus. Fetal and adult human tracheal and bronchial epithelial cells cultured from explants and SV40 transformed adult human tracheal epithelial cells were exposed to a recently isolated strain of influenza A virus (H1N1) and a laboratory passaged strain (WSN) of influenza A virus at similar multiplicity of infection. All cultures derived from explants showed hemadsorption (approximately 30% of the cells) with the H1N1 virus. No hemadsorption was detected with the WSN virus. One of two transformed cell lines showed a 5-10% hemadsorption to cells after H1N1 exposure and none following exposure to WSN. Immunofluorescent staining for influenza A-specific antigens in virus-exposed, explant-derived cells indicated viral infection and replication in these cells. Hemagglutinating material in the growth medium of infected, explant-derived cell lines, increased as a function of time, indicating the production of virus proteins. Exposure of rhesus monkey kidney cells and new human tracheal epithelial cultures to supernatant from these cells resulted in hemadsorption, indicating the presence of infectious virus in the supernatant. Light microscopic examination of virally infected bronchial epithelial cells demonstrated that the common types of cytopathic changes were rarely seen while cell proliferation continued over time. The data indicate that influenza A virus can infect, replicate, and produce infectious virus in cultured human tracheal and bronchial epithelial cells.  相似文献   

16.
The aim of this study was to elucidate the in vitro response of gammadelta T cells to Epstein-Barr virus (EBV)-infected B cells and to determine whether EBV-induced heat shock proteins (HSPs) might serve as gammadelta T-cell stimulants. Cytofluorometric analysis revealed HSP90 cell surface expression in 12% of the EBV-immortalized B-cell population in all four of the B-cell lines tested. HSP27, HSP60, and HSP70 were not detected on the cell surface by cytofluorometry in these same B-cell lines. HSP90 and HSP60, but not HSP70 or HSP27, were detected on the cell surface after 125I cell surface labeling and immunoprecipitation with anti-human HSP monoclonal antibodies. In vitro kinetic studies indicated that gammadelta T cells increased at least twofold by day 11 postinfection in cultures of EBV-seronegative peripheral blood lymphocytes infected with EBV, whereas percentages of alphabeta T cells in these same cultures either decreased slightly or remained relatively unchanged in response to EBV infection. Addition of anti-human HSP90 monoclonal antibody to the EBV-infected lymphocyte cultures inhibited gammadelta T-cell expansion by 92%. The inhibition of gammadelta T-cell expansion by anti-HSP90 antibody was reversed upon treatment with exogenous HSP90. Taken together, these results indicate that HSP90 played an important role in the stimulation of gammadelta T cells during EBV infection of B cells in vitro and may serve as an important immunomodulator of gammadelta T cells during acute EBV infection.  相似文献   

17.
Epstein-Barr virus (EBV) is invariably present in undifferentiated nasopharyngeal carcinomas, is found sporadically in other carcinomas, and replicates in the differentiated layer of the tongue epithelium in lesions of oral hairy leukoplakia. However, it is not clear how frequently or by what mechanism EBV infects epithelial cells normally. Here, we report that a human epithelial cell line, 293, can be stably infected by EBV that has been genetically marked with a selectable gene. We show that 293 cells express a relatively low level of CD21, that binding of fluorescein-labeled EBV to 293 cells can be detected, and that both the binding of virus to cells and infection can be blocked with antibodies specific for CD21. Two proteins known to form complexes with CD21 on the surface of lymphoid cells, CD35 and CD19, could not be detected at the surface of 293 cells. All infected clones of 293 cells exhibited tight latency with a pattern of gene expression similar to that of type II latency, but productive EBV replication and release of infectious virus could be induced inefficiently by forced expression of the lytic transactivators, R and Z. Low levels of mRNA specific for the transforming membrane protein of EBV, LMP-1, as well as for LMP-2, were detected; however, LMP-1 protein was either undetectable or near the limit of detection at less than 5% of the level typical of EBV-transformed B cells. A slight increase in expression of the receptor for epidermal growth factor, which can be induced in epithelial cells by LMP-1, was detected at the cell surface with two EBV-infected 293 cell clones. These results show that low levels of surface CD21 can support infection of an epithelial cell line by EBV. The results also raise the possibility that in a normal infection of epithelial cells by EBV, the LMP-1 protein is not expressed at levels that are high enough to be oncogenic and that there might be differences in the cells of EBV-associated epithelial cancers that have arisen to allow for elevated expression of LMP-1.  相似文献   

18.
Epstein-Barr virus (EBV) recombinants with specifically mutated BCRF1 genes were constructed and compared with wild-type BCRF1 recombinants derived in parallel for the ability to initiate and maintain latent infection and growth transformation in primary human B lymphocytes. A stop codon insertion after codon 116 of the 170-codon BCRF1 open reading frame or deletion of the entire gene had no effect on latent infection, B-lymphocyte proliferation into long-term lymphoblastoid cell lines (LCLs), or virus replication. LCLs infected with the stop codon recombinant were indistinguishable from wild-type recombinant-infected LCLs in tumorigenicity in SCID mice. However, mutant BCRF1 recombinant-infected cells differed from wild-type recombinant-infected cells in their inability to block gamma interferon release in cultures of permissively infected LCLs incubated with autologous human peripheral blood mononuclear cells. This is the first functional assay for BCRF1 expression from the EBV genome. BCRF1 probably plays a key role in modulating the specific and nonspecific host responses to EBV infection.  相似文献   

19.
The interaction of herpes simplex virus type 1 (HSV-1) with murine macrophage cell lines was examined. The cell lines appeared to be moderately permissive for HSV-1 replication, though the yield of the virus was limited compared with that in Vero cells. Furthermore, the murine macrophage cell line SL-1, bearing Ia antigen, was persistently infected with HSV-1 for over one year, and was designated SL-1/KOS. Persistent infection could not be established in an Ia antigen-negative macrophage cell line, SL-4. In the SL-1/KOS culture, there was a small number of infected cells as revealed by infectious center assay. Treatment with monoclonal antibody against HSV-1 cured the persistent infection. Therefore maintenance of the persistent infection is considered to be due to a carrier culture consisting of a minority of infected cells and a majority of uninfected cells. In the SL-1/KOS cultures a low level of interferon (IFN) was found. When a large amount of exogenous recombinant murine IFN-beta (10(5)-10(6) international units/ml) was added to the culture, virus production diminished to undetectable levels. These results suggest that IFN plays an important role in the maintenance of persistent infection. In long-term persistently infected cultures, syncytium formation appeared and the virus from such cultures had a different DNA structure from that of the virus originally used for infection as revealed by restriction endonuclease analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号