首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of cationic anesthetics with biological membranes and the resulting alterations of membrane electrokinetic properties continue to be of current interest. The present study was designed to examine the effects of procaine hydrochloride (PRHCL) on the mobility of human red blood cells (RBC); electrophoretic measurements were made on RBC suspended in phosphate-buffered saline (PBS, pH = 5.0, 7.4, or 9.2), autologous plasma or 3 g% dextran T70/PBS (pH = 7.4), with PRHCL concentrations from 8 x 10(-6) to 8 x 10(-2) M. Low concentrations of PRHCL (8 x 10(-5)-8 x 10(-3) M) significantly (p less than 0.001) increased RBC mobility, with a maximal increase of 8.2% at 8 x 10(-4) M. Conversely, a higher PRHCL concentration (8 x 10(-2) M significantly (p less than 0.001) decreased RBC mobility. Both glutaraldehyde fixation and lipid extraction abolished any PRHCL-induced increase in RBC mobility; the observed increases in mobility for normal cells are, thus, consistent with a mechanism based on expansion of the RBC membrane glycocalyx. Microelectrophoretic methods were also used to study the effect of PRHCL (8 x 10(-4) and 8 x 10(-2) M) on RBC membrane calcium binding, with the results indicating that PRHCL competes with calcium for neuraminate binding sites. We conclude that the observed changes in RBC electrokinetic properties reflect incorporation of PRHCL into the RBC membrane; such changes may be of importance in modulating cell-cell interactions.  相似文献   

2.
Therapeutic administration of immunoglobulins (Ig) has the potential to precipitate thrombotic events. This phenomenon may be explained by red blood cell (RBC) aggregation, which can be potentiated by Ig. The contribution of plasma albumin and fibrinogen to Ig-induced RBC aggregation is unclear. We examined RBC aggregation in three settings: 1) patients receiving therapeutic infusions of Ig; 2) patients receiving plasma supplemented in vitro with Ig; and 3) patients receiving RBC suspensions in standard buffer with varying concentrations of albumin, Ig, and fibrinogen. Ig infusion augmented aggregation of RBCs from patients with normal or high plasma levels of albumin but decreased aggregation in those with lower plasma albumin concentrations. In vitro, RBC aggregation was significantly increased only when all three components, fibrinogen, albumin, and Ig, were present at or above normal concentrations in the suspension but was unaffected when any one of the components was absent from the suspension. Our results suggest a three-way interaction among fibrinogen, Ig, and albumin that synergistically induces RBC aggregation in plasma. Understanding these interactions may help predict clinically important phenomena related to RBC aggregation, such as thrombotic complications of Ig infusion.  相似文献   

3.
F2-isoprostanes are a recently discovered series of prostaglandin (PG)F2-like compounds that are produced in vivo in humans by nonenzymatic free radical catalyzed peroxidation of arachidonic acid. One of the compounds that can be produced in abundance by this mechanism is 8-epi-PGF2 alpha. 8-epi-PGF2 alpha is a potent vasoconstrictor in the rat, an effect that has been shown to be mediated via interaction with vascular thromboxane (TxA2)/endoperoxide (PGH2) receptors. In an effort to further understand the biological properties of this prostanoid in relation to its ability to interact with TxA2/PGH2 receptors, we examined its effects on human and rat platelets. At concentrations of 10(-6) M and 10(-5) M, 8-epi-PGF2 alpha induced only a shape change in human platelets and at higher concentrations (10(-4) M) induced reversible but not irreversible aggregation. Both the shape change and reversible aggregation were unaffected by indomethacin but were inhibited by the TxA2/PGH2 receptor antagonist SQ29548. Conversely, 8-epi-PGF2 alpha inhibited platelet aggregation induced by the TxA2/PGH2 receptor agonists U46619 (10(-6) M) and IBOP (3.3 x 10(-7) M) with an IC50 of 1.6 x 10(-6) M and 1.8 x 10(-6) M, respectively. 8-epi-PGF2 alpha also inhibited platelet aggregation induced by arachidonic acid. Similarly, in rat platelets, 8-epi-PGF2 alpha alone induced only modest reversible aggregation but completely inhibited U46619-induced aggregation.  相似文献   

4.
Red blood cell (RBC) aggregation is known to be of deciding influence on erythrocyte sedimentation-rate (ESR) and on whole blood viscoelastic properties. The rheological behaviour of blood collected from a control-group with normal ESR is compared to the viscoelastic behaviour of blood collected from two groups with high to very high ESR, whose individuals are suffering from chronical polyarthritis and Morbus Bechterew, respectively. The rheological properties are evaluated by means of an oscillating-flow capillary-rheometer where the viscous (eta') and elastic (eta") component of the complex viscosity (eta) is measured at a constant frequency of 2 Hz. Correcting for the varying hematocrit of the different blood samples according to an exponential equation, the viscoelastic data are found to be elevated in the groups with high ESR. For the viscous properties this is only due to the increase of the plasma viscosity. A correction for the plasma viscosity, however, shows that the viscous properties at low shear- rates (2s-1) are significantly reduced, whereas elastic properties in a range of medium shear-rates (10s-1 to 50s-1) are significantly increased (P less than 0.001, t-test of Student). This result is discussed to be due to the high packing density of the RBC in fast sedimenting aggregates. High packing density reduces the effective volume of the RBC but increases the stiffness of the aggregates.  相似文献   

5.
GH(4)C(1) cells are a clonal strain of rat pituitary cells that synthesize and secrete prolactin and growth hormone. Chronic treatment (longer than 24 h) of GH(4)C(1) cells with epidermal growth factor (EGF) (10(-8) M) decreased by 30-40 percent both the rate of cell proliferation and the plateau density reached by cultures. Inhibition of cell proliferation was accompanied by a change in cellular morphology from a spherical appearance to an elongated flattened shape and by a 40-60 percent increase in cell volume. These actions of EGF were qualitatively similar to those of the hypothalamic tripeptide thyrotropin-releasing hormone (TRH) (10(-7) M) which decreased the rate of cell proliferation by 10-20 percent and caused a 15 percent increase in cell volume. The presence of supramaximal concentrations of both EGF (10(-8)M) and TRH (10(-7)M) resulted in greater effects on cell volume and cell multiplication than either peptide alone. EGF also altered hormone production by GH(4)C(1) cells in the same manner as TRH. Treatment of cultures with 10(-8) M EGF for 2-6 d increased prolactin synthesis five- to ninefold compared to a two- to threefold stimulation by 10(-7) M TRH. Growth hormone production by the same cultures was inhibited 40 percent by EGF and 15 percent by TRH. The half- maximal effect of EGF to increase prolactin synthesis, decrease growth hormone production, and inhibit cell proliferation occurred at a concentration of 5 x 10 (-11) M. Insulin and multiplication stimulating activity, two other growth factors tested, did not alter cell proliferation, cell morphology, or hormone production by GH(4)C(1) cells, indicating the specificity of the EGF effect. Fibroblast growth factor, however, had effects similar to those of EGF and TRH. Of five pituitary cell strains tested, all but one responded to chronic EGF treatment with specifically altered hormone production. Acute chronic EGF treatment with specifically altered hormone production. Acute treatment (30 min) of GH(4)C(1) cells with 10(-8) M EGF caused a 30 percent enhancement of prolactin release compared to a greater than twofold increase caused by 10(-7) M TRH. Therefore, although EGF and TRH have qualitatively similar effects on GH(4)C(1) cells, their powers to affect hormone release acutely or hormone synthesis and cell proliferation chronically are distinct.  相似文献   

6.
Methylxanthines, including the bronchodilators theophylline and aminophylline, in high concentrations (greater than 10(-4) M) inhibit cyclic nucleotide phosphodiesterase activity and in low, clinically relevant concentrations (10(-5) to 10(-4) M) are antagonists of extracellular adenosine receptors. The effect of therapeutic concentrations of methylxanthines on human neutrophil functions stimulated by N-formyl-methionyl-leucyl-phenylalanine (FMLP) was examined. Preincubation of cytochalasin B-treated neutrophils with 10(-5) M to 3 X 10(-3) M methylxanthine resulted in a biphasic, concentration-dependent effect on neutrophil aggregation, lysosomal enzyme release, and superoxide anion formation. At 10(-5) to 10(-4) M, theophylline and aminophylline potentiated neutrophil aggregation, lysosomal enzyme release (30 to 50%, p less than 0.005), and superoxide anion formation (30 to 60%, p less than 0.005). 1-Methyl-3-isobutylxanthine at these same concentrations potentiated only neutrophil aggregation and lysosomal enzyme release (30 to 40%, p less than 0.005). The three methylxanthines inhibited each response up to 90% at concentrations greater than 10(-4) M. 8-Phenyltheophylline, which does not inhibit phosphodiesterase activity, produced only potentiation. Preincubation of neutrophils with adenosine deaminase mimicked the methylxanthine potentiation, whereas addition of adenosine (3 X 10(-8) to 3 X 10(-7) M) reversed the methylxanthine-induced potentiation in a concentration-dependent manner. These results indicate that therapeutic concentrations of methylxanthines may potentiate neutrophil activation in vivo by competing with circulating adenosine for neutrophil adenosine receptors.  相似文献   

7.
Cell-cell affinity of senescent human erythrocytes   总被引:3,自引:0,他引:3       下载免费PDF全文
During their 120-day life span, human red blood cells (RBC) undergo several physicochemical changes, including an increased tendency to aggregate in plasma or polymer solutions. This study was designed to examine potential associations between age-related differences in RBC mobility, aggregation, and membrane glycocalyx properties for cells suspended in buffer and in 3 g/dl solutions of 70.3 kDa dextran. A recent model for depletion-mediated RBC aggregation was employed to calculate the changes of glycocalyx properties that were consistent with experimental electrophoretic mobility (EPM) and aggregation data. Young and old cells were obtained by density separation, after which aggregation and EPM were determined versus ionic strength; old cells exhibited a two- to threefold greater aggregation in dextran. EPM of old cells was identical to young cells in polymer-free media yet was 4% greater in dextran. The greater EPM for old RBC indicates a larger polymer depletion layer, which could be explained either by a 10-15% decrease of their glycocalyx thickness or a similar percentage decrease of polymer penetration into their glycocalyx. The larger depletion layer leads to markedly elevated cell-cell affinities for old cells, with the computed affinity increases consistent with enhanced old RBC aggregation. These results provide a rational explanation for the aggregation and EPM behavior of old RBC, and raise the possibility of depletion-mediated interactions contributing to senescent cell removal from the circulation.  相似文献   

8.
The binding of estradiol to uterine cytosoluble receptors from 24-day-old rats was reduced or potentiated by unsaturated fatty acids (NEFAs), depending on the concentrations of estradiol and unsaturated NEFAs. At estradiol concentrations of up to 1.5 x 10(-8) M, unsaturated NEFAs inhibited estradiol binding to the 8 S cytosol receptor. This inhibition was dose-dependent (10-70%, p less than 0.001) and a function of NEFA unsaturation. Scatchard analysis indicated that unsaturated NEFAs caused a large decrease in receptor affinity for estradiol. Polyunsaturated NEFAs had no apparent effect on estradiol binding at estradiol concentrations of 2-4 x 10(-8) M. At high estradiol concentrations (above 4 x 10(-8) M), estradiol binding was increased 130-250% (p less than 0.01) by polyunsaturated NEFAs. This increased binding was particularly associated with proteins sedimenting at 12.5 S and the 8 S binding was, in fact, reduced. Metabolic studies showed that the reduced binding in the presence of unsaturated fatty acids was correlated with a decrease in reversibly bound estradiol at low estradiol concentrations. The increase in estradiol binding at high estradiol concentrations is the result of a reduction in reversibly bound estradiol and an increase in nonorganic solvent-extractable (water-soluble) estradiol. The amounts of these water-soluble estradiol derivatives depended on both estradiol and unsaturated NEFA concentrations. 70% of the water-soluble estradiol derivatives were trichloroacetic acid-precipitable, suggesting a covalent protein-steroid link. Thus, changes in the hydrophobic fatty acid environment of the uterine cytosol estrogen receptor could modify estrogen-receptor function by altering binding site conformation and/or by inducing changes in estradiol metabolism.  相似文献   

9.
Although the effects of red blood cell (RBC) aggregation on low-shear rate blood viscosity are well known, the effects on in vivo flow resistance are still not fully resolved. The present study was designed to explore the in vivo effects of RBC aggregation on flow resistance using a novel technique to enhance aggregation: cells are covalently coated with a block copolymer (Pluronic F-98) and then suspended in unaltered plasma. RBC aggregation was increased in graded steps by varying the Pluronic concentration during cell coating and was verified by microscopy and erythrocyte sedimentation rate (ESR), which increased by 200% at the highest Pluronic level. RBC suspensions were perfused through an isolated in situ guinea pig hindlimb preparation while the arterial perfusion pressure was held constant at 100 mmHg via a pressure servo-controlled pump. No significant effects of enhanced RBC aggregation were observed when studies were conducted in preparations with intact vascular control mechanisms. However, after inhibition of smooth muscle tone (using 10(-4) M papaverin), a significant change in flow resistance was observed in a RBC suspension with a 97% increase of ESR. Additional enhancements of RBC aggregation (i.e., 136 and 162% increases of ESR) decreased flow resistance almost to control values. This was followed by another significant increase in flow resistance during perfusion with RBC suspensions with a 200% increase of ESR. This triphasic effect of graded increases of RBC aggregation is most likely explained by an interplay of several hemodynamic mechanisms that are triggered by enhanced RBC aggregation.  相似文献   

10.
The roles of calcium in cell signaling consequent to chromatophorotropin action and as an activator of mechanochemical transport proteins responsible for pigment granule translocation were investigated in the red ovarian chromatosomes of the freshwater shrimp Macrobrachium olfersii. Chromatosomes were perfused with known concentrations of free Ca++ (10(-3) to 10(-9) M) prepared in Mg(++)-EGTA-buffered physiological saline after selectively permeabilizing with 25 microM calcium ionophore A23187 or with 10(-8) M red pigment concentrating hormone (RPCH). The degree of pigment aggregation and the translocation velocity of the leading edges of the pigment mass were recorded in individual chromatosomes during aggregation induced by RPCH or A23187 and dispersion induced by low Ca++. Aggregation is Ca++ dependent, showing a dual extracellular and intracellular requirement. After perfusion with reduced Ca++ (10(-4) to 10(-9) M), RPCH triggers partial aggregation (approximately 65%), although the maximum translocation velocities (approximately 16.5 microns/min) and velocity profiles are unaffected. After aggregation induced at or below 10(-5) M Ca++, spontaneous pigment dispersion ensues, suggesting a Ca++ requirement for RPCH coupling to its receptor, or a concentration-dependent, Ca(++)-induced Ca(++)-release mechanism. The Ca(++)-channel blockers Mn++ (5 mM) and verapamil (50 microM) have no effect on RPCH-triggered aggregation. An intracellular Ca++ requirement for aggregation was demonstrated in chromatosomes in which the Ca++ gradient across the cell membrane was dissipated with A23187. At free [Ca++] above 10(-3) M, aggregation is complete; at 10(-4) M, aggregation is partial, followed by spontaneous dispersion; below 10(-5) M Ca++, pigments do not aggregate but disperse slightly. Aggregation velocities diminish from 11.6 +/- 1.2 microns/min at 5.5 mM Ca++ to 7.4 +/- 1.3 microns/min at 10(-4) M Ca++. Half-maximum aggregation occurs at 3.2 x 10(-5) M Ca++ and half-maximum translocation velocity at 4.8 x 10(-5) M Ca++. Pigment redispersion after 5.5 mM Ca(++)-A23187-induced aggregation is initiated by reducing extracellular Ca++: slight dispersion begins at 10(-7) M, complete dispersion being attained at 10(-9) M Ca++. Dispersion velocities increase from 0.6 +/- 0.2 to 3.1 +/- 0.5 microns/min. Half-maximum dispersion occurs at 7.6 x 10(-9) M Ca++ and half-maximum translocation velocity at 2.9 x 10(-9) M Ca++. These data reveal an extracellular and an intracellular Ca++ requirement for RPCH action, and demonstrate that the centripetal or centrifugal direction of pigment movement, the translocation velocity, and the degree of pigment aggregation or dispersion attained are calcium-dependent properties of the granule translocation apparatus.  相似文献   

11.
The effects of the oxygenation-deoxygenation process on red blood cell (RBC) aggregation were examined in relation to morphological changes in RBCs and the contribution of CO(2). A low-shear rheoscope was used to measure the rate of rouleaux (one-dimensional aggregate) formation in diluted autologous plasma exposed to gas mixtures with different Po(2) and Pco(2). RBC indexes and RBC suspension pH were measured for the oxygenated or the deoxygenated condition, and the cell shape was observed with a scanning electron microscope. In the oxygenation-deoxygenation process, the rate of rouleaux formation increased with rising pH of the RBC suspension, which was lowered in the presence of CO(2). The rate increased with increasing mean corpuscular hemoglobin concentration (thus the cells shrank), which increased with rising pH and decreased in the presence of CO(2). With rising pH, cell diameter increased and cell thickness decreased (thus the cell flattened). In addition, slight echinocytosis was induced in the presence of CO(2), and the aggregation was reduced by the morphological change. In conclusion, RBC aggregation in the oxygenation-deoxygenation process is mainly influenced by the pH-dependent change in the surface area-to-volume ratio of the cells, and the aggregation is modified by CO(2)-induced acidification and the accompanying changes in mean corpuscular hemoglobin concentration and cell shape.  相似文献   

12.
13.
Treatment of monolayer cultures of MCF-7 cells with prostaglandins PGA1 and PGF2 alpha inhibited cell proliferation, reduced the rate of labeled precursor incorporation into DNA, RNA, and protein, and induced morphological changes in a dose-dependent manner. The rate of [3H]thymidine incorporation was increased by PGA1 at 10(-10)-10(-8) M, while a sharp decrease was observed at 10(-6)-10(-4) M (p less than 0.05 and p less than 0.005). PGF2 alpha inhibited [3H]thymidine incorporation at all concentrations tested. Similar results were obtained for [3H]uridine incorporation with both PGs. PGA1 inhibited [3H]leucine incorporation at 10(-4) M, but increased incorporation at 10(-10)-10(-6) M. At the ultrastructural level, neither PG induced morphological alterations at 10(-12)-10(-8) M. However, at 10(-6)-10(-4) M both PGA1 and PGF2 alpha diminished the number and size of cell surface projections; some cells appeared to completely lack microvilli. Disorganization of mitochondrial cristae and increased electron density of the matrix were also evident.  相似文献   

14.
The effects of U46619, a thromboxane mimic, on cytosolic Ca2+ concentration and platelet aggregation were determined in human platelets. Cytosolic Ca2+ concentration was determined by Quin-2 fluorescence and platelet aggregation quantitated with an aggregometer. Addition of U46619 (1 x 10(-7) M) to the platelet suspension produced a rapid increase in cytosolic Ca2+ and platelet aggregation. Pretreatment of platelets with EGTA (3 x 10(-3) M), verapamil (5 x 10(-4) M), a calcium entry blocker, or 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride (1 x 10(-3) M), an inhibitor of intracellular Ca2+ release, either blunted or markedly delayed the rate, but not the magnitude, of increase in cytosolic Ca2+ and prevented platelet aggregation by U46619. Pretreatment of platelets with prostaglandin I2 (PGI2) (5 x 10(-8) M), PGD2 (5 x 10(-8) M), PGE1 (5 x 10(-8) M), PGF2 alpha (1 x 10(-5) M), dibutyryl cAMP (5 x 10(-3) M), or forskolin (1 x 10(-6) M) prevented both the increase in cytosolic Ca2+ and the associated platelet aggregation induced by U46619. These data suggest that U46619 may induce platelet aggregation through an increase in cytosolic Ca2+, and that both Ca2+ entry and its release from intracellular storage sites probably contribute to the increase in cytosolic Ca2+. Furthermore, the rate of the increase in cytosolic Ca2+ concentration, as well as the magnitude of the increase, appear to be critical for platelet aggregation induced by U46619. Our data are consistent with the hypothesis that PGs inhibit U46619-induced platelet aggregation by preventing the increase in cytosolic Ca2+, and that these effects may be mediated via an increase in cAMP, since they were induced by PGs and cAMP.  相似文献   

15.
Plasma total testosterone (T), apparently free T and testosterone binding globulin (TeBG) capacity determined in 14 normal men aged 30-40 years were 461 +/- 100 ng/100 ml, 9.4 +/- 3.0 ng/100 ml and 5.7 +/- 1.9 X 10(-8) M, respectively, whereas in 16 hypogonadal men the corresponding values were 38.6 +/- 27.2 ng/100 ml, 0.47 +/- 0.41 ng/100 ml and 10.4 +/- 3.4 X 10(-8) M showing the TeBG capacity significantly higher (p less than 0.001) in hypogonadal than in normal men. Treatment of 5 hypogonadal subjects with 250 mg testosterone enanthate plus 50 mg testosterone propionate decreased (p less than 0.001) the TeBG level from 14.7 +/- 2.5 X 10(-8YM to 8.3 +/- 1.4 X 10(-8) M on day 8 after a single injection. According to this difference in TeBG, the free T fraction in plasma rose from 0.94% to 1.9% of the total T concentration. These results suggest that alteration of total plasma T affected the TeBG capacity. Decreased T levels raised and increased T concentrations suppressed TeBG, but with a delayed response to the changed T concentrations. The initial mean values in 12 patients with prostatic cancer aged 60-74 years were 397 +/- 165 ng/100 ml, 4.05 +/- 1.8 ng/100 ml and 11.9 +/- 3.3 X 10(-8) M, respectively. The TeBG capacity in these patients was significantly higher and the free T concentration significantly lower (p less than 0.001) than those of the younger normal males. After treatment with 12 g diethylstilbestrol diphosphate and orchidectomy, the TeBG increased to 33.3 +/- 13.1 X 10(-8) M and the plasma free T concentration decreased to the minimal value of 0.053 +/- 0.04 ng/100 ml.  相似文献   

16.
The toxicity of Al to Desulfovibrio desulfuricans G20 was assessed over a period of 8 weeks in a modified lactate C medium buffered at four initial pHs (5.0, 6.5, 7.2, and 8.3) and treated with five levels of added Al (0, 0.01, 0.1, 1.0, and 10 mM). At pH 5, cell population densities decreased significantly and any effect of Al was negligible compared to that of the pH. At pHs 6.5 and 7.2, the cell population densities increased by 30-fold during the first few days and then remained stable for soluble-Al concentrations of <5 x 10(-5) M. In treatments having total-Al concentrations of > or =1 mM, soluble-Al concentrations exceeded 5 x 10(-5) M and limited cell population growth substantially and proportionally. At pH 8.3, soluble-Al concentrations were below the 5 x 10(-5) M toxicity threshold and cell population density increases of 20- to 40-fold were observed. An apparent cell population response to added Al at pH 8.3 was attributed to the presence of large, spirilloidal bacteria (accounting for as much as 80% of the cells at the 10 mM added Al level). Calculations of soluble-Al speciation for the pH 6.5 and 7.2 treatments that showed Al toxicity suggested the possible presence of the Al(13)O(4)(OH)(24)(H(2)O)(12)(7+) "tridecamer" cation and an inverse correlation of the tridecamer concentration and the cell population density. Analysis by (27)Al nuclear magnetic resonance spectroscopy, however, yielded no evidence of this species in freshly prepared samples or those taken 800 days after inoculation. Exclusion of the tridecamer species from the aqueous speciation calculations at pHs 6.5 and 7.2 yielded inverse correlations of the neutral Al(OH)(3) and anionic Al(OH)(4)(-) monomeric species with cell population density, suggesting that one or both of these ions bear primary responsibility for the toxicity observed.  相似文献   

17.
Lungs from fetal guinea pigs (62 +/- 1 days of gestation) were supported in vitro for 3 h and fluid production was determined by a dye dilution method, based on Blue Dextran 2000. Twenty untreated lungs produced fluid at 1.41 +/- 0.22 mL.kg-1 body weight.h-1, with no significant changes during later hours. Treatments with analogues of cAMP, cAMP, or forskolin during the middle hour reduced production significantly. Dibutyryl cAMP at 10(-3) M produced reabsorption (117.8 +/- 13.6% reduction, p less than 0.001, n = 10); at 10(-4) M it reduced production (77.3 +/- 11.0% fall, p less than 0.001, n = 10). 8-Bromo-cAMP appeared more effective; at 10(-4) M it caused slight reabsorption (109.0 +/- 8.9% reduction, p less than 0.001, n = 6) and at lower concentrations it decreased production (at 10(-6) M, 67.6 +/- 9.6% fall, p less than 0.001, n = 6; at 10(-7) M, 40.0 +/- 14.3% fall, p less than 0.001, n = 6). At high doses, cAMP itself produced similar effects (at 5 x 10(-3) M, 141.6 +/- 22.8% reduction, p less than 0.001, n = 6); at 10(-4) it was ineffective (n = 3). Forskolin at 10(-6) M induced the strongest reabsorptions seen (159.1 +/- 10.9% reduction, p less than 0.001, n = 6); at lower concentrations it reduced production (at 10(-8) M, 73.8 +/- 5.5% fall, p less than 0.001, n = 6; at 10(-9) M, 29.2 +/- 9.2% fall, p less than 0.05, n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Thyroid hormone (10(-11) to 10(-10) M) stimulates plasma membrane Ca2+-ATPase activity in vitro in various tissues, including the human red cell (RBC), by a calmodulin-requiring mechanism. Bepridil and cetiedil are Ca2+ antagonists with an intracellular (calmodulin-antagonist) site of action, as well as an effect on the calcium channel in excitable tissues. We have studied the actions of bepridil and cetiedil on Ca2+-ATPase in a channel-free membrane (RBC) to determine effectiveness of these agents as inhibitors of thyroid hormone action on the enzyme. Dose-response studies showed that thyroid hormone stimulation of Ca2+-ATPase activity in vitro was significantly inhibited by as little as 2 x 10(-5) M bepridil and cetiedil. IC50 values of bepridil and cetiedil for thyroid hormone response of the enzyme were 5 x 10(-5) and 2 x 10(-5) M, respectively, whereas IC50s of these agents for enzyme activity in the absence of thyroid hormone were both 10(-4) M. Progressive addition of purified rat testis calmodulin in vitro (10-150 ng calmodulin/mg membrane protein) restored hormone responsiveness in the presence of bepridil and cetiedil. Binding of labeled thyroid hormone by RBC membranes was unaffected by bepridil and cetiedil (up to 2 x 10(-4) M). Thus, bepridil and cetiedil are Ca2+ antagonists that reversibly inhibit thyroid hormone action on human RBC Ca2+-ATPase by a calmodulin-dependent mechanism. Thyroid hormone effect on Ca2+-ATPase is more susceptible to bepridil and cetiedil inhibition than is basal enzyme activity.  相似文献   

19.
Iron deficiency caused by 7 weeks of intensive physical exercise   总被引:2,自引:0,他引:2  
The present study was designed to evaluate the effect of an intensive physical training program involving both isometric and isotonic activities on the body iron status of 8 females and 11 males (age 20 +/- 1 year). The training was carried out over a 7 week period and included 8 h of varying physical activities each day. Venous blood samples were obtained from the subjects prior to the beginning of the training, on day 2 and in weeks 2, 4, 6 and 7 of the program. Blood samples were analyzed for iron, ferritin and hemoglobin (Hb) concentrations, total iron binding capacity (TIBC) and red blood cell count (RBC). Iron levels of males and females decreased 65% after 2 weeks of training (p less than 0.001). At the end of the training program 5 males and 6 females had lower than normal iron values (less than 13.4 mumol.l-1). TIBC increased 25% in women and 18% in men following 2 and 4 weeks of training (p less than 0.001) and remained at this elevated level throughout the training period. Ferritin levels decreased 50% in both sexes after 4 weeks of exercise (p less than 0.05) and remained at this level until the end of the training. Hb and RBC decreased 8-10% in both sexes during the training period. In two of the women anemia occurred after 4 weeks of training. The development of latent iron deficiency in a substantial number of participants after a relatively short period of training is uncommon and may reflect the high intensity of exercise required in this program.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Renal resistance to antidiuretic hormone (ADH) has been speculated to be a mechanism of transient nephrogenic diabetes insipidus occurring during late pregnancy. In order to study possible involvement of ovarian steroids in this mechanism, their effect on cyclic adenosine 3':5'-monophosphate (cAMP) response to arginine vasopressin (AVP) was examined utilizing rat and human renal medullary cells in monolayer culture. In both rat and human cells, estradiol significantly reduced cAMP response to AVP; estradiol at 1.84 x 10(-8) M, 1.84 x 10(-7) M and 1.84 x 10(-6) M decreased cAMP production stimulated by 10(-8) M AVP to 78 +/- 5%, 67 +/- 2% (P less than 0.05) and 52 +/- 1% (P less than 0.001) of the control in rat renal cells, respectively, and in human renal cells the effect of estradiol was comparable to that in rat cells. In rat renal cells, progesterone also reduced cAMP response to AVP dose-dependently; progesterone at 1.59 x 10(-7) M, 1.59 x 10(-6) M and 1.59 x 10(-5) M decreased cAMP production stimulated by 10(-8) M AVP to 87 +/- 1%, 72 +/- 5% (P less than 0.001) and 37 +/- 5% (P less than 0.001) of the control, respectively. On the other hand, corticosterone and dexamethasone at concentrations ranging from 10(-8) M to 10(-5) M and aldosterone at concentrations ranging from 10(-9) M to 10(-5) M did not alter cAMP response to AVP significantly. The suppressive effect of estradiol increased with time until six hours and thereafter it reached a plateau.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号